The equidistribution of nilsequences

James Leng

October 26, 2023

Types of problems considered

■ What can we say about $r_{k}(N)$, the largest subset of $[N]:=\{0,1, \ldots, N-1\}$ that does not contain a k-term arithmetic progression with nonzero common difference?

Types of problems considered

■ What can we say about $r_{k}(N)$, the largest subset of $[N]:=\{0,1, \ldots, N-1\}$ that does not contain a k-term arithmetic progression with nonzero common difference?
■ What about polynomial progressions?

Types of problems considered

The

■ What can we say about $r_{k}(N)$, the largest subset of $[N]:=\{0,1, \ldots, N-1\}$ that does not contain a k-term arithmetic progression with nonzero common difference?

- What about polynomial progressions?

■ How many primes in arithmetic progressions are there in [N]?

Types of problems considered

The

■ What can we say about $r_{k}(N)$, the largest subset of $[N]:=\{0,1, \ldots, N-1\}$ that does not contain a k-term arithmetic progression with nonzero common difference?

■ What about polynomial progressions?
■ How many primes in arithmetic progressions are there in [N]?
■ Each of these problems involve the nilpotent Hardy-Littlewood method, a generalization of the Hardy-Littlewood Circle method.

Heuristic: a high dimensional circle method

■ Let $F: \mathbb{R}^{d} / \mathbb{Z}^{d} \rightarrow \mathbb{C}$ be smooth, and $\alpha \in \mathbb{R}^{d}$.

Heuristic: a high dimensional circle method

The

James Leng

- Let $F: \mathbb{R}^{d} / \mathbb{Z}^{d} \rightarrow \mathbb{C}$ be smooth, and $\alpha \in \mathbb{R}^{d}$.
- Consider $F(\alpha n)$. We say that $F(\alpha n)$ is δ-equidistributed on scale N if

$$
\left|\mathbb{E}_{n \in[N]}:=\frac{1}{N} \sum_{n=0}^{N-1} F(n \alpha)-\int_{\mathbb{R}^{d} / \mathbb{Z}^{d}} F(x) d x\right|<\delta\|F\|_{L i p} .
$$

Heuristic: a high dimensional circle method

The

- Let $F: \mathbb{R}^{d} / \mathbb{Z}^{d} \rightarrow \mathbb{C}$ be smooth, and $\alpha \in \mathbb{R}^{d}$.
- Consider $F(\alpha n)$. We say that $F(\alpha n)$ is δ-equidistributed on scale N if

$$
\left|\mathbb{E}_{n \in[N]}:=\frac{1}{N} \sum_{n=0}^{N-1} F(n \alpha)-\int_{\mathbb{R}^{d} / \mathbb{Z}^{d}} F(x) d x\right|<\delta\|F\|_{L i p} .
$$

- We wish $F(\alpha n)$ to be equidistributed since $F(\alpha n)$ equidistributed behaves randomly, so is easy to study.

Heuristic: a high dimensional circle method

■ We wish to "approximate" $F(\alpha n)$ (possibly along progressions) by well-behaved objects.

Heuristic: a high dimensional circle method

■ We wish to "approximate" $F(\alpha n)$ (possibly along progressions) by well-behaved objects.

- These well-behaved objects are of the form $\tilde{F}\left(\alpha^{\prime} n\right)$ where α^{\prime} is "very equidistributed" along a rational subgroup $\mathbb{R}^{d} / \mathbb{Z}^{d}$.

Heuristic: a high dimensional circle method

The
equidistribution of nilsequences

James Leng

■ Suppose $\|F\|_{\text {Lip }}=1$.

Heuristic: a high dimensional circle method

The equidistribution of nilsequences

■ Suppose $\|F\|_{\text {Lip }}=1$.
■ If $F(\alpha n)$ is δ-equidistributed, then we are good.

Heuristic: a high dimensional circle method

The

James Leng

■ Suppose $\|F\|_{\text {Lip }}=1$.
■ If $F(\alpha n)$ is δ-equidistributed, then we are good.
■ Otherwise, we may Fourier approximate

$$
F(\alpha n)=\sum_{\xi \in \mathbb{Z}^{d},|\xi| \leq\|F\|_{L i p} \delta^{-1-o(1)}} a_{\xi} e(\xi \cdot(\alpha n))+O\left(\delta^{1+o(1)}\right)
$$

with $\left|a_{\xi}\right| \leq 1$.

Heuristic: a high dimensional circle method

The

- Suppose $\|F\|_{\text {Lip }}=1$.
- If $F(\alpha n)$ is δ-equidistributed, then we are good.
- Otherwise, we may Fourier approximate

$$
F(\alpha n)=\sum_{\xi \in \mathbb{Z}^{d}, \mid \xi \leq\| \| F \|_{L i p} \delta^{-1-o(1)}} a_{\xi} e(\xi \cdot(\alpha n))+O\left(\delta^{1+o(1)}\right)
$$

with $\left|a_{\xi}\right| \leq 1$.

- Thus, there exists some nonzero ξ such that $\mathbb{E}_{n \in[N]} e(\xi \cdot \alpha n) \geq \delta^{O(d)}$. This rearranges to $\|\xi \cdot \alpha\|_{\mathbb{R} / \mathbb{Z}} \leq \frac{\delta^{-O(d)}}{N}$.

Heuristic: a high dimensional circle method

The equidistribution of nilsequences

James Leng

■ So we may write $\alpha=\epsilon+\alpha^{\prime}+\gamma$ where $\|\epsilon\|_{\mathbb{R} / \mathbb{Z}} \ll \frac{\delta^{-O(d)}}{N}, \alpha^{\prime}$ lies on a subgroup of $\mathbb{R}^{d} / \mathbb{Z}^{d}$ (that is $\delta^{-1-o(1)}$-rational), and γ is periodic modulo $\delta^{-1+o(1)}$.

Heuristic: a high dimensional circle method

The

James Leng

■ So we may write $\alpha=\epsilon+\alpha^{\prime}+\gamma$ where $\|\epsilon\|_{\mathbb{R} / \mathbb{Z}} \ll \frac{\delta^{-O(d)}}{N}, \alpha^{\prime}$ lies on a subgroup of $\mathbb{R}^{d} / \mathbb{Z}^{d}$ (that is $\delta^{-1-o(1)}$-rational), and γ is periodic modulo $\delta^{-1+o(1)}$.

■ Let q be the period of γ.

Heuristic: a high dimensional circle method

The

■ So we may write $\alpha=\epsilon+\alpha^{\prime}+\gamma$ where $\|\epsilon\|_{\mathbb{R} / \mathbb{Z}} \ll \frac{\delta^{-O(d)}}{N}, \alpha^{\prime}$ lies on a subgroup of $\mathbb{R}^{d} / \mathbb{Z}^{d}$ (that is $\delta^{-1-o(1)}$-rational), and γ is periodic modulo $\delta^{-1+o(1)}$.

■ Let q be the period of γ.
■ Along arithmetic progressions of common difference q and length $\delta^{O(d)}, F(\alpha n)$ can be approximated by $F\left(\epsilon_{0}+\alpha^{\prime} n\right)$ for some constant ϵ_{0}.

Heuristic: a high dimensional circle method

The

■ So we may write $\alpha=\epsilon+\alpha^{\prime}+\gamma$ where $\|\epsilon\|_{\mathbb{R} / \mathbb{Z}} \ll \frac{\delta^{-O(d)}}{N}, \alpha^{\prime}$ lies on a subgroup of $\mathbb{R}^{d} / \mathbb{Z}^{d}$ (that is $\delta^{-1-o(1)}$-rational), and γ is periodic modulo $\delta^{-1+o(1)}$.

■ Let q be the period of γ.
■ Along arithmetic progressions of common difference q and length $\delta^{O(d)}, F(\alpha n)$ can be approximated by $F\left(\epsilon_{0}+\alpha^{\prime} n\right)$ for some constant ϵ_{0}.

- We can thus restrict this to the subgroup that α^{\prime} lies in.

Heuristic: a high dimensional circle method

The

■ So we may write $\alpha=\epsilon+\alpha^{\prime}+\gamma$ where $\|\epsilon\|_{\mathbb{R} / \mathbb{Z}} \ll \frac{\delta^{-O(d)}}{N}, \alpha^{\prime}$ lies on a subgroup of $\mathbb{R}^{d} / \mathbb{Z}^{d}$ (that is $\delta^{-1-o(1)}$-rational), and γ is periodic modulo $\delta^{-1+o(1)}$.

■ Let q be the period of γ.
■ Along arithmetic progressions of common difference q and length $\delta^{O(d)}, F(\alpha n)$ can be approximated by $F\left(\epsilon_{0}+\alpha^{\prime} n\right)$ for some constant ϵ_{0}.

- We can thus restrict this to the subgroup that α^{\prime} lies in.

Bounds

- The Lipschitz constant of F increases by $\delta^{-1-o(1)}$,

James Leng

Bounds

The

James Leng

- The Lipschitz constant of F increases by $\delta^{-1-o(1)}$,

■ Thus, in order to still keep similar approximation of

$$
\left|\mathbb{E}_{n \in[N]} F(\alpha n)-\int F(x) d x\right| \ll \delta
$$

we would need to decrease the scale of equidistribution from δ to $\delta^{2+o(1)}$.

Bounds

The

James Leng

- The Lipschitz constant of F increases by $\delta^{-1-o(1)}$,

■ Thus, in order to still keep similar approximation of

$$
\left|\mathbb{E}_{n \in[N]} F(\alpha n)-\int F(x) d x\right| \ll \delta
$$

we would need to decrease the scale of equidistribution from δ to $\delta^{2+o(1)}$.
■ Under an iteration, this would produce at best bounds of the shape $\delta^{2^{d}}$ since $\delta \mapsto \delta^{2}$ iterates to $\delta^{2^{d}}$.

Bounds

The

- The Lipschitz constant of F increases by $\delta^{-1-o(1)}$,
- Thus, in order to still keep similar approximation of

$$
\left|\mathbb{E}_{n \in[N]} F(\alpha n)-\int F(x) d x\right| \ll \delta
$$

we would need to decrease the scale of equidistribution from δ to $\delta^{2+o(1)}$.

- Under an iteration, this would produce at best bounds of the shape $\delta^{2^{d}}$ since $\delta \mapsto \delta^{2}$ iterates to $\delta^{2^{d}}$.
- Can we do better than this? Can we produce bounds single exponential in dimensions, i.e. $\delta^{O(d)^{\circ(1)}}$?

Observation

■ Obstacle is "induction on dimensions."

Observation

■ Obstacle is "induction on dimensions."
■ Something like $\delta \mapsto \delta^{2}$ is not allowed under iteration, since this iterates to $\delta^{2^{d}}$.

Observation

■ Obstacle is "induction on dimensions."
■ Something like $\delta \mapsto \delta^{2}$ is not allowed under iteration, since this iterates to $\delta^{2^{d}}$.

- This process produces an equiditribution theory for the sequence (αn) rather than the sequence $F(\alpha n)$.

Observation

The

■ If we define (αn) to be δ-equidistributed if for every Lipschitz function F such that

$$
\left|\frac{1}{N} \sum_{n=0}^{N-1} F(n \alpha)-\int_{\mathbb{R}^{d} / \mathbb{Z}^{d}} F(x) d x\right|<\delta\|F\|_{L i p}
$$

a similar process to the work above would produce a factorization $\alpha=\epsilon+\alpha^{\prime}+\gamma$ where α^{\prime} is $\delta^{O(d)^{O(d)}}$-equidistrubted on a subgroup for every Lipschitz function on the subgroup.

Observation

The

- If we define (αn) to be δ-equidistributed if for every Lipschitz function F such that

$$
\left|\frac{1}{N} \sum_{n=0}^{N-1} F(n \alpha)-\int_{\mathbb{R}^{d} / \mathbb{Z}^{d}} F(x) d x\right|<\delta\|F\|_{L i p}
$$

a similar process to the work above would produce a factorization $\alpha=\epsilon+\alpha^{\prime}+\gamma$ where α^{\prime} is $\delta^{O(d)^{O(d)}}$-equidistrubted on a subgroup for every Lipschitz function on the subgroup.
■ Such a factorization result is known as a Ratner-type factorization theorem in the literature.

Lipschitz function

The
equidistribution of nilsequences

James Leng

■ As we decrease the dimension, we increase the Lipschitz constant.

Lipschitz function

The

James Leng

■ As we decrease the dimension, we increase the Lipschitz constant.

- This causes the number of complex exponentials we consider in the Fourier approximation to increase by a lot.

Lipschitz function

The

James Leng

■ As we decrease the dimension, we increase the Lipschitz constant.

- This causes the number of complex exponentials we consider in the Fourier approximation to increase by a lot.

■ However, if we work with a single Lipschitz function, we can forget about the function and just work with the Fourier approximation.

Lipschitz function

The

- As we decrease the dimension, we increase the Lipschitz constant.
■ This causes the number of complex exponentials we consider in the Fourier approximation to increase by a lot.

■ However, if we work with a single Lipschitz function, we can forget about the function and just work with the Fourier approximation.
■ If we do that, the number of complex exponentials we consider in fact decreases.

Lipschitz function

The

- As we decrease the dimension, we increase the Lipschitz constant.
■ This causes the number of complex exponentials we consider in the Fourier approximation to increase by a lot.

■ However, if we work with a single Lipschitz function, we can forget about the function and just work with the Fourier approximation.
■ If we do that, the number of complex exponentials we consider in fact decreases.

- Thus, one can prove an approximation result with bounds single exponential in dimension.

Main question

Question

What is the analogue of this heuristic in other contexts?
For instance, what can we say if instead of $\mathbb{R}^{d} / \mathbb{Z}^{d}$, we work with G / Γ where G is a Lie group, Γ a discrete cocompact subgroup (meaning that G / Γ is compact)?

Main theorem (informal version)

The equidistribution of nilsequences

James Leng

Theorem (L. 2023+)

There is such an analogue in the case where G is nilpotent (connected and simply connected), and Γ a discrete cocompact subgroup.

We say G is s-step nilpotent if we take $s+1$ commutators $[G,[G, \cdots,[G, G]]]=i d$.

Main theorem (informal version)

The

Theorem (L. 2023+)

There is such an analogue in the case where G is nilpotent (connected and simply connected), and Γ a discrete cocompact subgroup.

We say G is s-step nilpotent if we take $s+1$ commutators $[G,[G, \cdots,[G, G]]]=i d$. We will see applications of this theorem in arithmetic combinatorics later.

Example of nilpotent Lie group: Heisenberg group

The

James Leng

Simplest nontrivial example of a nilpotent Lie group is a Heisenberg group:

$$
\begin{aligned}
G & =\left(\begin{array}{lll}
1 & \mathbb{R} & \mathbb{R} \\
0 & 1 & \mathbb{R} \\
0 & 0 & 1
\end{array}\right) \\
\Gamma & =\left(\begin{array}{lll}
1 & \mathbb{Z} & \mathbb{Z} \\
0 & 1 & \mathbb{Z} \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Here, G is two-step nilpotent and admits the lower central series $G_{0}=G_{1}=G, G_{i}=\left[G_{i-1}, G\right]$.

Terminology and example

The

A Lipschitz function F on G / Γ evaluated at an orbit $g^{n} \Gamma$ is referred to as a nilsequence. If G and Γ are as above, and we let

$$
g=\left(\begin{array}{ccc}
1 & \alpha & 0 \\
0 & 1 & \beta \\
0 & 0 & 1
\end{array}\right), g^{n}=\left(\begin{array}{ccc}
1 & \alpha n & \binom{n}{2} \alpha \beta \\
0 & 1 & \beta n \\
0 & 0 & 1
\end{array}\right)
$$

G / Γ admits a parametrization in $(-1 / 2,1 / 2]^{3}$ as $\left(\{\alpha n\},\{\beta n\},\left\{\binom{n}{2} \alpha \beta-[\alpha n] \beta n\right\}\right)$ where $\{x\}=x-[x]$, where $[x]$ is the nearest integer to x with $\{x\} \in(-1 / 2,1 / 2]$.

Terminology and example

The

James Leng

Thus, when we Fourier expand $F\left(g^{n} \Gamma\right)$ with respect to that parametrization, we obtain bracket polynomials as opposed to characters.

$$
e\left(k[\alpha n]\{\beta n\}+k\binom{n}{2} \alpha \beta+\ell \alpha n+m \beta n\right) .
$$

Terminology and example

The

James Leng

Thus, when we Fourier expand $F\left(g^{n} \Gamma\right)$ with respect to that parametrization, we obtain bracket polynomials as opposed to characters.

$$
e\left(k[\alpha n]\{\beta n\}+k\binom{n}{2} \alpha \beta+\ell \alpha n+m \beta n\right) .
$$

These bracket polynomials are nilcharacters (to be defined formally later).

Terminology and example

■ In the one-step case (i.e. $\mathbb{R}^{d} / \mathbb{Z}^{d}$ case), it was an equidistribution theory for characters, that is, understanding sums of the form $\mathbb{E}_{n \in[N]} e(\alpha n)$ that led to an equidistribution theory for general Lipschitz functions.

Terminology and example

■ In the one-step case (i.e. $\mathbb{R}^{d} / \mathbb{Z}^{d}$ case), it was an equidistribution theory for characters, that is, understanding sums of the form $\mathbb{E}_{n \in[N]} e(\alpha n)$ that led to an equidistribution theory for general Lipschitz functions.
■ In view of this, we shall aim to develop an equidistribution theory of nilcharacters.

More terminology (quantifying nilmanifolds)

The equidistribution of nilsequences

We will assume G is s-step nilpotent, Г discrete cocompact.

More terminology (quantifying nilmanifolds)

The equidistribution of nilsequences

James Leng

We will assume G is s-step nilpotent, Г discrete cocompact. Consider the lower central series filtration $\left(G_{i}\right)_{i=0}^{\infty}$ with $G_{0}=G_{i}=G, G_{i+1}=\left[G_{i}, G\right]$.

More terminology (quantifying nilmanifolds)

The equidistribution of nilsequences

James Leng

We will assume G is s-step nilpotent, Г discrete cocompact. Consider the lower central series filtration $\left(G_{i}\right)_{i=0}^{\infty}$ with $G_{0}=G_{i}=G, G_{i+1}=\left[G_{i}, G\right]$. It is also equippied with a Mal'cev basis $\left(X_{i}\right)_{i=1}^{d}$ respecting the filtration, which are elements of the Lie algebra of G satisfying

$$
\left[X_{i}, X_{j}\right] \in \operatorname{Span}_{\mathbb{Q}}\left(X_{\max (i, j)+1}, \ldots, X_{d}\right)
$$

More terminology (quantifying nilmanifolds)

The equidistribution of nilsequences

James Leng

We will assume G is s-step nilpotent, Г discrete cocompact. Consider the lower central series filtration $\left(G_{i}\right)_{i=0}^{\infty}$ with $G_{0}=G_{i}=G, G_{i+1}=\left[G_{i}, G\right]$. It is also equippied with a Mal'cev basis $\left(X_{i}\right)_{i=1}^{d}$ respecting the filtration, which are elements of the Lie algebra of G satisfying

$$
\left[X_{i}, X_{j}\right] \in \operatorname{Span}_{\mathbb{Q}}\left(X_{\max (i, j)+1}, \ldots, X_{d}\right)
$$

The complexity of the Mal'cev basis, denoted M, is the largest height of elements $a_{i j k}$ where

$$
\left[X_{i}, X_{j}\right]=\sum_{k} a_{i j k} X_{k}
$$

More terminology (quantifying nilmanifolds)

The equidistribution of nilsequences

James Leng

We will assume G is s-step nilpotent, Γ discrete cocompact. Consider the lower central series filtration $\left(G_{i}\right)_{i=0}^{\infty}$ with $G_{0}=G_{i}=G, G_{i+1}=\left[G_{i}, G\right]$. It is also equippied with a Mal'cev basis $\left(X_{i}\right)_{i=1}^{d}$ respecting the filtration, which are elements of the Lie algebra of G satisfying

$$
\left[X_{i}, X_{j}\right] \in \operatorname{Span}_{\mathbb{Q}}\left(X_{\max (i, j)+1}, \ldots, X_{d}\right)
$$

The complexity of the Mal'cev basis, denoted M, is the largest height of elements $a_{i j k}$ where

$$
\left[X_{i}, X_{j}\right]=\sum_{k} a_{i j k} X_{k} .
$$

Furthermore, the elements $\prod_{i=1}^{d} \exp \left(t_{i} X_{i}\right)$ with $t_{i} \in \mathbb{R}$ generate G uniquely and when $t_{i} \in \mathbb{Z}$ generate Γ.

Definition of horizontal character

A horizontal character is a homomorphism $\eta: G / \Gamma \rightarrow \mathbb{R} / \mathbb{Z}$ which annihilates $[G, G]$.

Definition of horizontal character

A horizontal character is a homomorphism $\eta: G / \Gamma \rightarrow \mathbb{R} / \mathbb{Z}$ which annihilates $[G, G]$. By invoking Mal'cev coordinates, we may represent η as a vector k in \mathbb{Z}^{d}.

Definition of horizontal character

A horizontal character is a homomorphism $\eta: G / \Gamma \rightarrow \mathbb{R} / \mathbb{Z}$ which annihilates $[G, G]$. By invoking Mal'cev coordinates, we may represent η as a vector k in \mathbb{Z}^{d}. The modulus is then the largest component of k.

Previous results on quantifying nilsequence equidistribution

The equidistribution of nilsequences

James Leng

Theorem (Green-Tao)
If $F: G / \Gamma$ is Lipschitz, and

$$
\left|\mathbb{E}_{n \in[N]} F\left(g^{n} \Gamma\right)-\int_{G / \Gamma} F(x) d x\right| \geq \delta\|F\|_{L i p}
$$

then there exists a nonzero horizontal character η of modulus at most $(\delta / M)^{-O(d)^{O(d)} O^{O(1)}}$ such that

$$
\|\eta(g)\|_{\mathbb{R} / \mathbb{Z}} \ll(\delta / M)^{-O(d)^{O(d) O(1)}} / N .
$$

Notes on Green-Tao's theorem

The
equidistribution of nilsequences

James Leng

■ Theorem works for more general polynomial sequences with respect to the filtration.

Notes on Green-Tao's theorem

- Theorem works for more general polynomial sequences with respect to the filtration.
■ If G is degree two or step one, then bounds are single exponential in dimension.

Nilcharacter

Given a continuous homomorphism $\xi: G_{s} / \Gamma_{s} \rightarrow \mathbb{R} / \mathbb{Z}$, we define a nilcharacter of frequency ξ to be a Lipschitz function $F: G / \Gamma \rightarrow \mathbb{C}$ satisfying $F\left(g_{s} x\right)=e\left(\xi\left(g_{s}\right)\right) F(x)$ (think, bracket polynomial with s iterated/nested brackets.)

Iterating Green-Tao's result

The equidistribution of nilsequences

James Leng

■ We can again iterate to obtain a similar Ratner-type factorization theorem $g^{n}=\epsilon(n) g_{1}(n) \gamma(n)$, but now with bounds double exponential in dimension, even in the one-step case.

Iterating Green-Tao's result

The

James Leng

■ We can again iterate to obtain a similar Ratner-type factorization theorem $g^{n}=\epsilon(n) g_{1}(n) \gamma(n)$, but now with bounds double exponential in dimension, even in the one-step case.

- Since nilcharacters have integral zero, we may iterate this result to obtain a slightly stronger equidistribution theorem in this case.

Iterating Green-Tao's result

The

■ We can again iterate to obtain a similar Ratner-type factorization theorem $g^{n}=\epsilon(n) g_{1}(n) \gamma(n)$, but now with bounds double exponential in dimension, even in the one-step case.

- Since nilcharacters have integral zero, we may iterate this result to obtain a slightly stronger equidistribution theorem in this case.
- Unfortunately, inserting this result to the Fourier expanded nilcharacters in the two-step case doesn't do any better; the extra parameter, complexity, increases too fast.

Iterating Green-Tao's result

■ We can again iterate to obtain a similar Ratner-type factorization theorem $g^{n}=\epsilon(n) g_{1}(n) \gamma(n)$, but now with bounds double exponential in dimension, even in the one-step case.
■ Since nilcharacters have integral zero, we may iterate this result to obtain a slightly stronger equidistribution theorem in this case.

- Unfortunately, inserting this result to the Fourier expanded nilcharacters in the two-step case doesn't do any better; the extra parameter, complexity, increases too fast.
- induction on dimensions is a huge issue everywhere.

Bracket polynomials and Bohr sets

The
equidistribution of nilsequences

■ Why should we expect such a theory with bounds single exponential in dimension?

Bracket polynomials and Bohr sets

The

■ Why should we expect such a theory with bounds single exponential in dimension?
■ Green and Tao show that degree two bracket polynomials are "morally equivalent" to quadratic functions on large generalized arithmetic progressions.

Bracket polynomials and Bohr sets

■ Why should we expect such a theory with bounds single exponential in dimension?

■ Green and Tao show that degree two bracket polynomials are "morally equivalent" to quadratic functions on large generalized arithmetic progressions.
■ In 2010, Gowers and Wolf apply an equidistribution theory for quadratic functions on generalized arithmetic progressions to the true complexity problem.

Bracket polynomials and Bohr sets

The
equidistribution of nilsequences

James Leng

$$
\text { Let }[\vec{N}]=\left[N_{1}\right] \times\left[N_{2}\right] \times \cdots \times\left[N_{d}\right] \text {. Let }
$$

$$
q(\vec{n})=\sum_{i j} \alpha_{i j} n_{i} n_{j} \text {. We wish to study exponential sums }
$$

$$
\mathbb{E}_{\vec{n} \in[\vec{N}]} e(q(\vec{n})) .
$$

Bracket polynomials and Bohr sets

The
equidistribution of
nilsequences

James Leng

Let $[\vec{N}]=\left[N_{1}\right] \times\left[N_{2}\right] \times \cdots \times\left[N_{d}\right]$. Let
$q(\vec{n})=\sum_{i j} \alpha_{i j} n_{i} n_{j}$. We wish to study exponential sums

$$
\mathbb{E}_{\vec{n} \in[\vec{N}]} e(q(\vec{n})) .
$$

The conclusion is that there exists some integer $q \ll \delta^{-O(d)^{O(1)}}$ such that

$$
\left\|q \alpha_{i j}\right\|_{\mathbb{R} / \mathbb{Z}} \ll \frac{\delta^{-O(d)^{o(1)}}}{N_{i} N_{j}} .
$$

Bracket polynomials and Bohr sets

The

Let $[\vec{N}]=\left[N_{1}\right] \times\left[N_{2}\right] \times \cdots \times\left[N_{d}\right]$. Let
$q(\vec{n})=\sum_{i j} \alpha_{i j} n_{i} n_{j}$. We wish to study exponential sums

$$
\mathbb{E}_{\vec{n} \in[\vec{N}]} e(q(\vec{n})) .
$$

The conclusion is that there exists some integer $q \ll \delta^{-O(d)^{O(1)}}$ such that

$$
\left\|q \alpha_{i j}\right\|_{\mathbb{R} / \mathbb{Z}} \ll \frac{\delta^{-O(d)^{o(1)}}}{N_{i} N_{j}} .
$$

Bounds are good (single exponential in dimension).

Approaches

The

■ Can we generalize this approach using the Gowers-Wolf equidistribution theory framework (develop a "quadratic geometry of numbers")?

Approaches

The

■ Can we generalize this approach using the Gowers-Wolf equidistribution theory framework (develop a "quadratic geometry of numbers")?
■ Can we understand this approach in terms of nilmanifolds?

Statement of Main Theorem

■ We will assume G / Γ to be a s-step nilpotent Lie group of degree k, dimension d, and complexity M.

Statement of Main Theorem

The

James Leng

■ We will assume G / Γ to be a s-step nilpotent Lie group of degree k, dimension d, and complexity M.
■ $F: G / \Gamma \rightarrow \mathbb{C}$ will be a nilcharacter of frequency ξ with $|\xi| \leq(\delta / M)^{-1}$ (with δ some parameter). That is, $F\left(g_{s} x\right)=e\left(\xi\left(g_{s}\right)\right) F(x)$ for $g_{s} \in G_{(s)}$.

Statement of Main Theorem

The

- We will assume G / Γ to be a s-step nilpotent Lie group of degree k, dimension d, and complexity M.
- $F: G / \Gamma \rightarrow \mathbb{C}$ will be a nilcharacter of frequency ξ with $|\xi| \leq(\delta / M)^{-1}$ (with δ some parameter). That is, $F\left(g_{s} x\right)=e\left(\xi\left(g_{s}\right)\right) F(x)$ for $g_{s} \in G_{(s)}$.
■ If $\eta: G / \Gamma \rightarrow \mathbb{R} / \mathbb{Z}$ is a horizontal character, we identify it (via Mal'cev coordinates) with a vector $\vec{k} \in \mathbb{Z}^{d}$, so we may lift it to some $\tilde{\eta}: G \rightarrow \mathbb{R}$.

Statement of Main Theorem

The

■ We will assume G / Γ to be a s-step nilpotent Lie group of degree k, dimension d, and complexity M.
■ $F: G / \Gamma \rightarrow \mathbb{C}$ will be a nilcharacter of frequency ξ with $|\xi| \leq(\delta / M)^{-1}$ (with δ some parameter). That is, $F\left(g_{s} x\right)=e\left(\xi\left(g_{s}\right)\right) F(x)$ for $g_{s} \in G_{(s)}$.
■ If $\eta: G / \Gamma \rightarrow \mathbb{R} / \mathbb{Z}$ is a horizontal character, we identify it (via Mal'cev coordinates) with a vector $\vec{k} \in \mathbb{Z}^{d}$, so we may lift it to some $\tilde{\eta}: G \rightarrow \mathbb{R}$.
■ We say that $w \in G$ is orthogonal to η if $\tilde{\eta}(w)=0$.

Statement of Main Theorem

- We can define notions of linear independent of horizontal characters by identifying them with vectors in \mathbb{Z}^{d}.
■ By identifying $w \in \Gamma$ with a vector $k \in \mathbb{Z}^{d}$, we can also define modulus, and linear independence of w.

Statement of Main Theorem

The equidistribution of nilsequences

James Leng

Theorem

Let $\delta>0$ and N an integer. Suppose

$$
\left|\mathbb{E}_{n \in[N]} F\left(g^{n} \Gamma\right)\right| \geq \delta
$$

Then either $N \ll(\delta / M)^{-O_{s}(d)^{O_{s}(1)}}$ or there exists linearly independent horizontal characters $\eta_{1}, \ldots, \eta_{r}$ of modulus at most $(\delta / M)^{-O_{s}(d)^{O_{s}(1)}}$ such that

$$
\left\|\eta_{j} \circ g\right\|_{\mathbb{R} / \mathbb{Z}} \leq \frac{(\delta / M)^{-O_{s}(d)^{o_{s}(1)}}}{N}
$$

and if w_{i} are orthogonal to $\eta_{j}, \xi\left(\left[w_{1}, \ldots, w_{s}\right]\right)=0$.

Statement of the Main Theorem, $s=2$

The

Theorem

Let $\delta>0$ and N an integer. Suppose G is two-step and

$$
\left|\mathbb{E}_{n \in[N]} F\left(g^{n} \Gamma\right)\right| \geq \delta
$$

Then either $N \ll(\delta / M)^{-O(d)^{O(1)}}$ or there exists linearly independent horizontal characters $\eta_{1}, \ldots, \eta_{r}$ of modulus at most $(\delta / M)^{-O(d)^{O(1)}}$, and $w_{1}, \ldots, w_{d-r} \in \Gamma$ linearly independent and orthogonal to all of the η_{i} 's and modulus at most $(\delta / M)^{-O(d)^{O(1)}}$ such that

$$
\left\|\eta_{j} \circ g\right\|_{\mathbb{R} / \mathbb{Z}},\left\|\xi\left(\left[w_{i}, g\right]\right)\right\|_{\mathbb{R} / \mathbb{Z}} \ll \frac{(\delta / M)^{-O(d)^{o(1)}}}{N}
$$

Remark, $s=2$

The equidistribution of nilsequences

James Leng

If we let $\tilde{G}=G / \operatorname{ker}(\xi)$, then

$$
H:=\left\{g \in \tilde{G}: \eta_{i}(g)=0, \xi\left(\left[w_{i}, g\right]\right)=0 \forall i\right\}
$$

is abelian. This is because if $g, h \in H$, then it suffices to check that $[g, h]=0$. This follows since $\eta_{i}(g)=0$ implies that g can be written $(\bmod [G, G])$ as a combination of w_{i} 's.

Remark, $s=2$

The

If we let $\tilde{G}=G / \operatorname{ker}(\xi)$, then

$$
H:=\left\{g \in \tilde{G}: \eta_{i}(g)=0, \xi\left(\left[w_{i}, g\right]\right)=0 \forall i\right\}
$$

is abelian. This is because if $g, h \in H$, then it suffices to check that $[g, h]=0$. This follows since $\eta_{i}(g)=0$ implies that g can be written $(\bmod [G, G])$ as a combination of w_{i} 's. In fact, the map $(x, y) \mapsto \xi([x, y])$ is a symplectic form (after quotienting by degeneracies) and the theorem states that g morally lies in a Lagrangian (or rather isotropic) subspace with respect to the symplectic form.

Slogan

The equidistribution of nilsequences

James Leng

Theorem (Informal version)

If $F(g(n) \Gamma)$ is a nilcharacter of step s and

$$
\left|\mathbb{E}_{n} F(g(n) \Gamma)-\int F\right| \geq \delta
$$

then F is "morally" a nilsequence of step s-1 (with bounds single exponential in dimension).

Application: Polynomial Szemerédi

The equidistribution of nilsequences

James Leng

In 2022, L. showed:

Theorem

Let $P(x), Q(x) \in \mathbb{Z}[x]$ be two linearly independent polynomials with $P(0)=Q(0)=0$. Suppose $A \subseteq \mathbb{Z}_{N}$ lacks a progression of the form

$$
(x, x+P(y), x+Q(y), x+P(y)+Q(y)) . \text { Then }
$$

$$
|A| \ll P, Q \frac{N}{\log _{m_{P, Q}}(N)} .
$$

Here, $\log _{m_{P, Q}}(N)$ is an iterated logarithm with $m_{P, Q}$ times.

Application: Polynomial Szemerédi

The equidistribution of nilsequences

James Leng

Inserting this equidistribution theorem yields

Theorem (L, 2023+)

Let $P(x), Q(x) \in \mathbb{Z}[x]$ be two linearly independent polynomials with $P(0)=Q(0)=0$. Suppose $A \subseteq \mathbb{Z}_{N}$ lacks a progression of the form

$$
(x, x+P(y), x+Q(y), x+P(y)+Q(y)) . \text { Then }
$$

$$
|A| \ll P_{P, Q} \frac{N}{\exp \left(\log (N)^{c_{P, Q}}\right)} .
$$

Application: Polynomial Szemerédi

The equidistribution of nilsequences

James Leng

In 2023, Peluse, Sah, and Sawhney showed:

Theorem

Suppose a subset $A \subseteq[N]$ lacks a progression of the form $\left(x, x+y^{2}-1, x+2\left(y^{2}-1\right)\right)$. Then

$$
|A| \ll \frac{N}{\log _{m}(N)}
$$

(with $m \approx 200$).

Application: Polynomial Szemerédi

The equidistribution of nilsequences

James Leng

In 2023, Peluse, Sah, and Sawhney showed:

Theorem

Suppose a subset $A \subseteq[N]$ lacks a progression of the form $\left(x, x+y^{2}-1, x+2\left(y^{2}-1\right)\right)$. Then

$$
|A| \ll \frac{N}{\log _{m}(N)}
$$

(with $m \approx 200$).
They remark that a similar application of the equidistribution result would yield

$$
|A|<_{P, Q} \frac{N}{\exp \left(\log \log (N)^{c}\right)}
$$

Application: Inverse theory of Gowers norm

The

James Leng

In 2010, Green-Tao-Ziegler showed:

Theorem

Suppose $\|f\|_{U^{s+1}([N])} \geq \delta$. Then there exists a nilsequence $F\left(g^{n} \Gamma\right)$ of dimension $D(\delta)$ and complexity $M(\delta)$ such that

$$
\left|\left\langle f, F\left(g^{n} \Gamma\right)\right\rangle\right| \geq c(\delta) .
$$

Application: Inverse theory of Gowers norm

The
equidistribution of
nilsequences
James Leng

■ In 2010, Sanders shows that if $s=2$, we may take $D(\delta)=\log (1 / \delta)^{O(1)}, M(\delta)=O(1)$, and $c(\delta)=\exp \left(-\log (1 / \delta)^{O(1)}\right)$.

Application: Inverse theory of Gowers norm

The

James Leng

■ In 2010, Sanders shows that if $s=2$, we may take $D(\delta)=\log (1 / \delta)^{O(1)}, M(\delta)=O(1)$, and $c(\delta)=\exp \left(-\log (1 / \delta)^{O(1)}\right)$.
■ In 2018, Manners shows that we may generally take $D(\delta)=\delta^{-O_{s}(1)}, M(\delta)=\exp \exp \left(\delta^{-O_{s}(1)}\right)$, and $c(\delta)=\exp \left(-\exp \left(\delta^{-O_{s}(1)}\right)\right)$.

Application: Inverse theory of Gowers norm

The
equidistribution of
nilsequences
James Leng

■ In 2010, Sanders shows that if $s=2$, we may take $D(\delta)=\log (1 / \delta)^{O(1)}, M(\delta)=O(1)$, and $c(\delta)=\exp \left(-\log (1 / \delta)^{O(1)}\right)$.
■ In 2018, Manners shows that we may generally take $D(\delta)=\delta^{-O_{s}(1)}, M(\delta)=\exp \exp \left(\delta^{-O_{s}(1)}\right)$, and $c(\delta)=\exp \left(-\exp \left(\delta^{-O_{s}(1)}\right)\right)$.
■ In the case of $s=3$, Manners shows that we may take $M(\delta)=\exp \left(\delta^{-O(1)}\right)$ and $c(\delta)=\exp \left(-\delta^{-O(1)}\right)$.

Application: Inverse theory of Gowers norm

The

James Leng

We can show:

Theorem (L., 2023+)

In the case of $s=3$, we can take $M(\delta)=O(1)$, $D(\delta)=\exp \left(O\left(\log \log (1 / \delta)^{2}\right)\right)$, and $c(\delta)=\exp \left(-\exp \left(O\left(\log \log (1 / \delta)^{2}\right)\right)\right)$.

Sketch of proof, two-step case

$$
\text { Let } \phi(n)=\alpha n^{2}+\sum_{i} \alpha_{i} n\left[\beta_{i} n\right] \text {. }
$$

Sketch of proof, two-step case

The

James Leng

Let $\phi(n)=\alpha n^{2}+\sum_{i} \alpha_{i} n\left[\beta_{i} n\right]$. Assume for simplicity that $e(\phi(n+N))=e(\phi(n))$ with N prime and α_{i}, β_{i} have denominator N.

Sketch of proof, two-step case

The equidistribution of nilsequences

James Leng

Let $\phi(n)=\alpha n^{2}+\sum_{i} \alpha_{i} n\left[\beta_{i} n\right]$. Assume for simplicity that $e(\phi(n+N))=e(\phi(n))$ with N prime and α_{i}, β_{i} have denominator N. We wish to study what happens when

$$
\left|\mathbb{E}_{n \in \mathbb{Z}_{N}} e(\phi(n))\right| \geq \delta .
$$

Sketch of proof, two-step case

The

James Leng

Let $\phi(n)=\alpha n^{2}+\sum_{i} \alpha_{i} n\left[\beta_{i} n\right]$. Assume for simplicity that $e(\phi(n+N))=e(\phi(n))$ with N prime and α_{i}, β_{i} have denominator N. We wish to study what happens when

$$
\left|\mathbb{E}_{n \in \mathbb{Z}_{N}} e(\phi(n))\right| \geq \delta .
$$

Applying van der Corput gives that there exists $\delta^{O(1)} \mathrm{N}$ many $h \in \mathbb{Z}_{N}$ such that

$$
\left|\mathbb{E}_{n \in \mathbb{Z}_{N}} e(\phi(n+h)-\phi(n))\right| \geq \delta^{O(1)} .
$$

Sketch of proof, two-step case

The

James Leng

Let $\phi(n)=\alpha n^{2}+\sum_{i} \alpha_{i} n\left[\beta_{i} n\right]$. Assume for simplicity that $e(\phi(n+N))=e(\phi(n))$ with N prime and α_{i}, β_{i} have denominator N. We wish to study what happens when

$$
\left|\mathbb{E}_{n \in \mathbb{Z}_{N}} e(\phi(n))\right| \geq \delta
$$

Applying van der Corput gives that there exists $\delta^{O(1)} \mathrm{N}$ many $h \in \mathbb{Z}_{N}$ such that

$$
\left|\mathbb{E}_{n \in \mathbb{Z}_{N}} e(\phi(n+h)-\phi(n))\right| \geq \delta^{O(1)} .
$$

Let us analyze $\phi(n+h)$.

Fourier Complexity and Bracket Polynomials

The
equidistribution of nilsequences

James Leng

We can write

$$
\alpha(n+h)[\beta(n+h)]=\alpha n[\beta(n+h)]+\alpha h[\beta(n+h)]
$$

But how do we deal with $[\beta(n+h)]$?

Fourier Complexity and Bracket Polynomials

The
equidistribution of nilsequences

James Leng

We can write

$$
\alpha(n+h)[\beta(n+h)]=\alpha n[\beta(n+h)]+\alpha h[\beta(n+h)]
$$

But how do we deal with $[\beta(n+h)]$? We write

$$
\begin{gathered}
\alpha n[\beta(n+h)] \equiv \alpha n[\beta n]+\alpha n[\beta h] \\
+\{\alpha n\}(\{\beta n\}+\{\beta h\}-\{\beta(n+h)\}) .
\end{gathered}
$$

Fourier Complexity and Bracket Polynomials

The
equidistribution of nilsequences

James Leng

We can write

$$
\alpha(n+h)[\beta(n+h)]=\alpha n[\beta(n+h)]+\alpha h[\beta(n+h)]
$$

But how do we deal with $[\beta(n+h)]$? We write

$$
\begin{gathered}
\alpha n[\beta(n+h)] \equiv \alpha n[\beta n]+\alpha n[\beta h] \\
+\{\alpha n\}(\{\beta n\}+\{\beta h\}-\{\beta(n+h)\}) .
\end{gathered}
$$

The function $e(\{\alpha n\}\{\beta n\})$ can be written as $F(\{\alpha n\},\{\beta n\})$ where $F(x, y)=e(x y) . F$ is not defined on $(\mathbb{R} / \mathbb{Z})^{2}$, but if we approximate F with a smoothed out version of F near the boundary of $(-1 / 2,1 / 2]^{2}$, it will be!

Fourier Complexity and Bracket Polynomials

The

James Leng

We may thus Fourier approximate the smoothed out \tilde{F} to obtain

$$
\tilde{F}(x, y)=\sum_{|\eta| \leq \delta^{-1}} a_{\eta} e(\eta \cdot(x, y))+O_{L^{\infty}\left[\mathbb{T}^{2}\right]}(\delta)
$$

with $\left|a_{\eta}\right| \leq 1$ assuming that α, β are denominator N, we have

$$
F(\{\alpha n\},\{\beta n\})=\sum_{|\eta| \leq \delta^{-1}} a_{\eta} e(\eta \cdot(\alpha n, \beta n))+O_{L^{1}[N]}(\delta) .
$$

Fourier Complexity and Bracket Polynomials

The equidistribution of nilsequences

James Leng

Thus, $e(\{\alpha n\}(\{\beta n\}+\{\beta h\}-\{\beta(n+h)\})$ is lower order and may be Fourier expanded into linear phases. One can show that

$$
e(\phi(n+h)-\phi(n))=e\left(\sum_{i=1}^{d} \alpha_{i} n\left\{\beta_{i} h\right\}-\beta_{i} n\left\{\alpha_{i} h\right\}+\beta n h\right) .
$$

Thus, letting $a=\left(\alpha_{i},-\beta_{i}\right)$ and $\alpha=\left(\left\{\beta_{i} h\right\},\left\{\alpha_{i} n\right\}\right)$, we have

$$
\left|\mathbb{E}_{n \in[N]} e(a n \cdot\{\alpha h\}+\beta n h)\right| \geq \delta^{O(d)^{O(1)}} .
$$

This implies that

$$
\|\beta h+a \cdot\{\alpha h\}\|_{\mathbb{R} / \mathbb{Z}} \leq \frac{\delta^{-O(d)^{O(1)}}}{N} .
$$

Refined Bracket Polynomial Lemma

- (Side note: the manipulations above are morally equivalent to operations in Green and Tao's proof involving the joining $G \times{ }_{G_{2}} G$).

Refined Bracket Polynomial Lemma

- (Side note: the manipulations above are morally equivalent to operations in Green and Tao's proof involving the joining $G \times{ }_{G_{2}} G$).
- Green and Tao show that either $|a| \ll \delta^{-O(d)^{O(1)}} / N$, or that there exists some character $\eta \ll \delta^{-O(d)^{O(1)}}$ such that $\|\eta \cdot \alpha\| \ll \frac{\delta^{-O(d)^{O(1)}}}{N}$.

Refined Bracket Polynomial Lemma

The

James Leng

- (Side note: the manipulations above are morally equivalent to operations in Green and Tao's proof involving the joining $G \times{ }_{G_{2}} G$).
- Green and Tao show that either $|a| \ll \delta^{-O(d)^{O(1)}} / N$, or that there exists some character $\eta \ll \delta^{-O(d)^{O(1)}}$ such that $\|\eta \cdot \alpha\| \ll \frac{\delta^{-O(d)^{O(1)}}}{N}$.
- Can we do better?

Refined Bracket Polynomial Lemma

The

- (Side note: the manipulations above are morally equivalent to operations in Green and Tao's proof involving the joining $G \times{ }_{G_{2}} G$).
- Green and Tao show that either $|a| \ll \delta^{-O(d)^{O(1)}} / N$, or that there exists some character $\eta \ll \delta^{-O(d)^{O(1)}}$ such that $\|\eta \cdot \alpha\| \ll \frac{\delta^{-O(d)^{O(1)}}}{N}$.
- Can we do better?
- Gowers-Wolf suggests that we may be able to.

Refined Bracket Polynomial Lemma

The equidistribution of nilsequences

James Leng

Lemma

Let $\frac{1}{10}>\delta>0$ and N be a prime. Suppose $\alpha, a \in \mathbb{R}^{d}$ are of denominator $N,|a| \leq \delta^{-1}$,

$$
\|\beta+a \cdot\{\alpha h\}\|_{\mathbb{R} / \mathbb{Z}}=0
$$

for δN many $h \in[N]$. The either $N \ll \delta^{-O(d)^{O(1)}}$ or else there exists linearly independent w_{1}, \ldots, w_{r} and $\eta_{1}, \ldots, \eta_{d-r}$ in \mathbb{Z}^{d} with size at most $\delta^{-O(d)^{O(1)}}$ such that $\left\langle w_{i}, \eta_{j}\right\rangle=0$ and

$$
\left\|\eta_{j} \cdot \alpha\right\|_{\mathbb{R} / \mathbb{Z}}=0, \quad\left|w_{i} \cdot a\right|=0
$$

Description of Proof

- Tao has a simple proof (in the denominator N case) using Minkowski's second theorem. This does not generalize so simply.

Description of Proof

The

- Tao has a simple proof (in the denominator N case) using Minkowski's second theorem. This does not generalize so simply.
- L.'s proof is quite intricate, at one point involving an iteration

$$
\begin{gathered}
\left(\delta_{j}, M_{j}, K_{j}, N_{j}, L_{j}, q_{j}\right) \\
=\left(\delta_{j-1} / 4, M_{j-1},\left(2 q_{j-1} K_{1} / 2^{d}\right)^{O\left(j d^{2}\right)}, N_{j-1} /\left(L_{j-1} q_{j-1}\right),\right. \\
\left.j L_{j-1}\left(\delta_{j-1} / 2^{d} M\right)^{-O(d)},\left(\delta_{j-1} / 2^{d} M\right)^{-O(d)} q_{j-1}\right)
\end{gathered}
$$

Remarks and questions

James Leng

■ One can use similar ideas for the proof with the bracket polynomial $\sum_{i} \alpha_{i} n\left[\beta_{i} n^{2}\right]$, and it would still work.

Remarks and questions

■ One can use similar ideas for the proof with the bracket polynomial $\sum_{i} \alpha_{i} n\left[\beta_{i} n^{2}\right]$, and it would still work.

■ It is possible (though extremely painful) to rewrite this proof using purely bracket polynomial formalism.

Remarks and questions

The

James Leng

■ One can use similar ideas for the proof with the bracket polynomial $\sum_{i} \alpha_{i} n\left[\beta_{i} n^{2}\right]$, and it would still work.

- It is possible (though extremely painful) to rewrite this proof using purely bracket polynomial formalism.
■ Is it possible to improve the upper bounds for $r_{5}(N)$, the size of the largest subset of $[N]$ which avoids 5-term arithmetic progressions?

Remarks and questions

The

James Leng

■ One can use similar ideas for the proof with the bracket polynomial $\sum_{i} \alpha_{i} n\left[\beta_{i} n^{2}\right]$, and it would still work.

- It is possible (though extremely painful) to rewrite this proof using purely bracket polynomial formalism.
■ Is it possible to improve the upper bounds for $r_{5}(N)$, the size of the largest subset of $[N]$ which avoids 5-term arithmetic progressions?
■ Is it possible to improve $U^{s+1}(\mathbb{Z} / N \mathbb{Z})$ inverse theorem for all s ?

Thank you!

The equidistribution of nilsequences

James Leng

Appendix: sketch of refined bracket polynomial lemma

The
equidistribution of nilsequences

James Leng

Begin with the expression:

$$
\|a \cdot\{\alpha h\}+\gamma h+\beta\|_{\mathbb{R} / \mathbb{Z}} \approx 0
$$

where $|\beta| \approx 0$ for δN_{1} many $h \in I$ where I is an interval of size N_{1}.

Appendix: sketch of refined bracket polynomial lemma

The
equidistribution of nilsequences

James Leng

Begin with the expression:

$$
\|a \cdot\{\alpha h\}+\gamma h+\beta\|_{\mathbb{R} / \mathbb{Z}} \approx 0
$$

where $|\beta| \approx 0$ for δN_{1} many $h \in I$ where I is an interval of size N_{1}.

■ If $|a| \approx 0$, we're done.

Appendix: sketch of refined bracket polynomial lemma

The

Begin with the expression:

$$
\|a \cdot\{\alpha h\}+\gamma h+\beta\|_{\mathbb{R} / \mathbb{Z}} \approx 0
$$

where $|\beta| \approx 0$ for δN_{1} many $h \in I$ where I is an interval of size N_{1}.

■ If $|a| \approx 0$, we're done.
■ since β is small, we can pigeonhole in h, showing that there exists some θ such that for $\delta / 2 N_{2}$ many $h \in J\left(\right.$ where $\left.N_{2} \sim N_{1}\left(\delta / 2^{d+1} d M\right)^{O(d)} / L\right)$ $\left(|J|=N_{2}\right):$

$$
\|a \cdot\{\alpha h\}+\theta\|_{\mathbb{R} / \mathbb{Z}} \approx 0
$$

Refined proof

The equidistribution of nilsequences

James Leng

By pigeonholing in sign pattern of $\{\alpha h\}$, there exists $\delta / 2^{d+1} d M N_{2}$ many $h \in J$ such that

$$
a \cdot\{\alpha h\} \approx j
$$

for some $j \in[2 d M]$.

Refined proof

The

James Leng

By pigeonholing in sign pattern of $\{\alpha h\}$, there exists $\delta / 2^{d+1} d M N_{2}$ many $h \in J$ such that

$$
a \cdot\{\alpha h\} \approx j
$$

for some $j \in[2 d M]$. Subtract two such values to get for δN_{2} many $h \in\left[-N_{2}, N_{2}\right]$,

$$
|a \cdot\{\alpha h\}| \approx 0
$$

Refined proof

The

James Leng

By pigeonholing in sign pattern of $\{\alpha h\}$, there exists $\delta / 2^{d+1} d M N_{2}$ many $h \in J$ such that

$$
a \cdot\{\alpha h\} \approx j
$$

for some $j \in[2 d M]$. Subtract two such values to get for δN_{2} many $h \in\left[-N_{2}, N_{2}\right]$,

$$
|a \cdot\{\alpha h\}| \approx 0
$$

Consider the tube in the direction of a and width $\left(\delta / 2^{d+1} d M\right)^{2}$ and length $\left(\delta / 2^{d+1} d M\right)^{-4 d}$.

Refined proof

The

By pigeonholing in sign pattern of $\{\alpha h\}$, there exists $\delta / 2^{d+1} d M N_{2}$ many $h \in J$ such that

$$
a \cdot\{\alpha h\} \approx j
$$

for some $j \in[2 d M]$. Subtract two such values to get for δN_{2} many $h \in\left[-N_{2}, N_{2}\right]$,

$$
|a \cdot\{\alpha h\}| \approx 0
$$

Consider the tube in the direction of a and width $\left(\delta / 2^{d+1} d M\right)^{2}$ and length $\left(\delta / 2^{d+1} d M\right)^{-4 d}$.
Minkowski), this has a lattice point η.

Refined proof

The

James Leng

By pigeonholing in sign pattern of $\{\alpha h\}$, there exists $\delta / 2^{d+1} d M N_{2}$ many $h \in J$ such that

$$
a \cdot\{\alpha h\} \approx j
$$

for some $j \in[2 d M]$. Subtract two such values to get for δN_{2} many $h \in\left[-N_{2}, N_{2}\right]$,

$$
|a \cdot\{\alpha h\}| \approx 0
$$

Consider the tube in the direction of a and width $\left(\delta / 2^{d+1} d M\right)^{2}$ and length $\left(\delta / 2^{d+1} d M\right)^{-4 d}$. (By
Minkowski), this has a lattice point η. One can show after scaling a up and Vinogradov's that there exists some $q \leq\left(\delta / 2^{d+1} d M\right)$ such that

$$
\|q \eta \cdot \alpha\|_{\mathbb{R} / \mathbb{Z}} \approx 0
$$

Refined proof

The

James Leng

Lemma

Suppose there are at least δN_{1} many $h \in J$ where J is an interval of size N_{1} such that

$$
\|\beta+\gamma h+a \cdot\{\alpha h\}\|_{\mathbb{R} / \mathbb{Z}} \leq \frac{K}{N}
$$

with $|\gamma| \leq L / N_{1}$. Then either
$N \ll L^{O(1)}\left(K \delta / 2^{d} M d\right)^{-O(d)^{O(1)}}$ or
$N_{1} \ll L^{O(1)}\left(K \delta / 2^{d} M d\right)^{-O(d)^{O(1)}}$ or
$\left(\delta / 2^{d} M d\right)^{4 d}\|a\|_{\infty} \leq K / N$ or there exists an integer vector v of size at most $\left(\delta / 2^{d} M d\right)^{-O(d)}$ in a
$\left(\delta / 2^{d} M d\right)$-tube in the direction of a such that $\|v \cdot \alpha\|_{\mathbb{R} / \mathbb{Z}} \leq L\left(\delta / 2^{d} M d\right)^{-O(d)} / N_{1}$.

Refined proof

The

James Leng

Cleaned up version:

Lemma

Suppose $|a| \leq M$, for $>_{\delta} N_{1}$ many h that

$$
\|\beta+\gamma h+a \cdot\{\alpha h\}\|_{\mathbb{R} / \mathbb{Z}} \|_{\mathbb{R} / \mathbb{Z}} \approx 0 .
$$

Then provided parameters aren't too small, either $|a| \approx 0$ or there exists some v with $|v|<_{\delta, M} 1$ in a small tube in the direction of a such that $\|v \cdot \alpha\|_{\mathbb{R} / \mathbb{Z}} \approx 0$.

Refined proof

The equidistribution of nilsequences

James Leng

Now we begin the iteration.

Refined proof

The equidistribution of nilsequences

James Leng

Now we begin the iteration. Suppose

$$
\|\beta+\gamma h+a \cdot\{\alpha h\}\|_{\mathbb{R} / \mathbb{Z}} \|_{\mathbb{R} / \mathbb{Z}} \approx 0 .
$$

Refined proof

The equidistribution of nilsequences

James Leng

Now we begin the iteration. Suppose

$$
\|\beta+\gamma h+a \cdot\{\alpha h\}\|_{\mathbb{R} / \mathbb{Z}} \|_{\mathbb{R} / \mathbb{Z}} \approx 0 .
$$

Then either $|a| \approx 0$ or there exists some η such that $\eta \cdot \alpha \approx 0(\bmod 1)$.

Refined proof

The equidistribution of nilsequences

James Leng

Now we begin the iteration. Suppose

$$
\|\beta+\gamma h+a \cdot\{\alpha h\}\|_{\mathbb{R} / \mathbb{Z}} \|_{\mathbb{R} / \mathbb{Z}} \approx 0 .
$$

Then either $|a| \approx 0$ or there exists some η such that $\eta \cdot \alpha \approx 0(\bmod 1)$. Suppose (for simplicity) $\eta_{1}=1$.

Refined proof

The

Now we begin the iteration. Suppose

$$
\|\beta+\gamma h+a \cdot\{\alpha h\}\|_{\mathbb{R} / \mathbb{Z}} \|_{\mathbb{R} / \mathbb{Z}} \approx 0
$$

Then either $|a| \approx 0$ or there exists some η such that $\eta \cdot \alpha \approx 0(\bmod 1)$. Suppose (for simplicity) $\eta_{1}=1$. So

$$
\left\|\tilde{a} \cdot\{\alpha h\}+\gamma h+\beta+a_{1} P(h)\right\|_{\mathbb{R} / \mathbb{Z}} \approx 0
$$

where $\tilde{a}=\left(0, a_{2} \eta_{1}-a_{1} \eta_{2}, a_{3} \eta_{1}-a_{1} \eta_{3}, \ldots, a_{d} \eta_{1}-a_{1} \eta_{d}\right)$ and

$$
P(h)=\left\{\alpha_{1} h\right\}+\eta_{2}\left\{\alpha_{2} h\right\}+\cdots+\eta_{d}\left\{\alpha_{d} h\right\} .
$$

Refined proof

The

Now we begin the iteration. Suppose

$$
\|\beta+\gamma h+a \cdot\{\alpha h\}\|_{\mathbb{R} / \mathbb{Z}} \|_{\mathbb{R} / \mathbb{Z}} \approx 0
$$

Then either $|a| \approx 0$ or there exists some η such that $\eta \cdot \alpha \approx 0(\bmod 1)$. Suppose (for simplicity) $\eta_{1}=1$. So

$$
\left\|\tilde{a} \cdot\{\alpha h\}+\gamma h+\beta+a_{1} P(h)\right\|_{\mathbb{R} / \mathbb{Z}} \approx 0
$$

where $\tilde{a}=\left(0, a_{2} \eta_{1}-a_{1} \eta_{2}, a_{3} \eta_{1}-a_{1} \eta_{3}, \ldots, a_{d} \eta_{1}-a_{1} \eta_{d}\right)$ and

$$
P(h)=\left\{\alpha_{1} h\right\}+\eta_{2}\left\{\alpha_{2} h\right\}+\cdots+\eta_{d}\left\{\alpha_{d} h\right\}
$$

By pigeonholing h in one of the values P takes, we can iterate.

Refined proof

Problems:
■ $|\tilde{a}|$ might be too large. This causes the M parameter to increase.

Refined proof

Problems:
■ $|\tilde{a}|$ might be too large. This causes the M parameter to increase.

- pigeonholing in h causes the density to decrease like $\delta \mapsto \Omega_{M}\left(\delta^{O(d)}\right)$, which is worse than $\delta \mapsto \delta^{2}$ which isn't allowed.

Refined proof

The
equidistribution of nilsequences

James Leng

To overcome first problem, observe (from Minkowski) that η must lie in a tube in the direction of a. Thus, |ã| is actually smaller than $|a|$.

Refined proof

The

To overcome first problem, observe (from Minkowski) that η must lie in a tube in the direction of a. Thus, $|\tilde{a}|$ is actually smaller than $|a|$. This is because if η lies in a tube of width ϵ in the direction of a, we write

$$
\eta=t a+O_{\leq 1}(\epsilon)
$$

(where $O_{\leq 1}$ denotes that the implicit constant is ≤ 1) then

$$
\eta_{i}=t a_{i}+O_{\leq 1}(\epsilon) .
$$

Then

$$
\eta_{1} a_{i}-a_{1} \eta_{i}=O_{\leq 2}(|a| \epsilon) .
$$

Side note

Green and Tao use a Fourier proof in their proof of "bracket polynomial lemma." One can get that η lies in a tube around a via the uncertainty principle.

Side note

Green and Tao use a Fourier proof in their proof of "bracket polynomial lemma." One can get that η lies in a tube around a via the uncertainty principle. This doesn't give as good bounds though, and still would result in an increase in $|\tilde{a}|$ over $|a|$, but increase is not fatal to the argument. This would still work for the iteration.

Refined proof

The

James Leng

To overcome the second issue, we observe the following:

- $S=\{h: P(h)=j\}$ has "bounded Fourier complexity," i.e., 1_{S} can be described by a "bounded number of Fourier coefficients." (more on this later)

Refined proof

The

James Leng

To overcome the second issue, we observe the following:

- $S=\{h: P(h)=j\}$ has "bounded Fourier complexity," i.e., 1_{S} can be described by a "bounded number of Fourier coefficients." (more on this later)
- By pigeonholing in h, you lose this information.

Refined proof

The

James Leng

To overcome the second issue, we observe the following:

- $S=\{h: P(h)=j\}$ has "bounded Fourier complexity," i.e., 1_{S} can be described by a "bounded number of Fourier coefficients." (more on this later)
- By pigeonholing in h, you lose this information.
- Idea: convert the problem to:

$$
\left|\mathbb{E}_{n \in[N]} e(a n \cdot\{\alpha h\}+\gamma n h+\beta n)\right| \geq K^{-1} .
$$

Refined proof

The equidistribution of nilsequences

James Leng

Making similar substitutions gives:
$\mid \mathbb{E}_{n \in[N]} e\left(\right.$ ãn $\left.\cdot\{\alpha h\}+\gamma n h+\beta n+\left\{a_{1} n\right\} P(h)\right) \mid \geq K^{-1}$.

Refined proof

The

James Leng

Making similar substitutions gives:

$$
\left|\mathbb{E}_{n \in[N]} e\left(\tilde{a} n \cdot\{\alpha h\}+\gamma n h+\beta n+\left\{a_{1} n\right\} P(h)\right)\right| \geq K^{-1} .
$$

We have

$$
e\left(\left\{a_{1} n\right\} P(h)\right)=e\left(\left\{a_{1} n\right\}\left(\left\{\alpha_{1} h\right\}+\eta_{2}\left\{\alpha_{2} h\right\}+\cdots+\eta_{d}\left\{\alpha_{d} h\right\}\right)\right)
$$

Refined proof

The

James Leng

Making similar substitutions gives:

$$
\left|\mathbb{E}_{n \in[N]} e\left(\tilde{a} n \cdot\{\alpha h\}+\gamma n h+\beta n+\left\{a_{1} n\right\} P(h)\right)\right| \geq K^{-1} .
$$

We have

$$
e\left(\left\{a_{1} n\right\} P(h)\right)=e\left(\left\{a_{1} n\right\}\left(\left\{\alpha_{1} h\right\}+\eta_{2}\left\{\alpha_{2} h\right\}+\cdots+\eta_{d}\left\{\alpha_{d} h\right\}\right)\right)
$$

We can use the previous Fourier expansion trick!

Fourier complexity lemma

The

James Leng

We define the $L^{p}[N] \delta$-Fourier complexity (likewise $L^{p}([N] \times[H]) \delta$-Fourier complexity) of a function $f:[N] \rightarrow \mathbb{C}$ to be the infimum of all L such that

$$
f(n)=\sum_{i} a_{i} e\left(\xi_{i} n\right)+g
$$

where $\|g\|_{L^{p}[N]} \leq \delta$ and $\sum_{i}\left|a_{i}\right|=L$.

Fourier complexity lemma

The nilsequences

James Leng

Lemma (Bilinear Fourier Complexity Lemma I)

Let

$$
\alpha_{1}, \ldots, \alpha_{d}, \beta_{1}, \ldots, \beta_{d}, \gamma_{1}, \ldots, \gamma_{d}, \gamma_{1}^{\prime}, \ldots, \gamma_{d}^{\prime} \in \mathbb{R}
$$

and let $\delta>0$ a real number and $N, H>0$ integers. Then either $N \ll\left(\delta / 2^{d} k\right)^{-O(d)^{2}}$, or $H \ll\left(\delta / 2^{d} k\right)^{-O(d)^{2}}$ or else

$$
e\left(k_{1}\left\{\alpha_{1} h+\gamma_{1}\right\}\left\{\beta_{1} n+\gamma_{1}^{\prime}\right\}\right.
$$

$\left.+k_{2}\left\{\alpha_{2} h+\gamma_{2}\right\}\left\{\beta_{2} n+\gamma_{2}^{\prime}\right\}+\cdots k_{d}\left\{\alpha_{d} h+\gamma_{d}\right\}\left\{\beta_{d} h+\gamma_{d}^{\prime}\right\}\right)$
has $L^{1}([N] \times[H])-\delta$-Fourier complexity at most $\left(\delta / 2^{d} k\right)^{-O\left(d^{2}\right)}$ for $\left|k_{i}\right| \leq k$ integers.

Idea of proof

■ Let $F(\vec{x}, \vec{y})=e\left(\sum_{i} k_{i} x_{i} y_{i}\right)$. Then we have $F\left(\{\alpha h+\gamma\},\left\{\beta n+\gamma^{\prime}\right\}\right)$ is the expression we want to study.

Idea of proof

■ Let $F(\vec{x}, \vec{y})=e\left(\sum_{i} k_{i} x_{i} y_{i}\right)$. Then we have $F\left(\{\alpha h+\gamma\},\left\{\beta n+\gamma^{\prime}\right\}\right)$ is the expression we want to study.

- Approximate F with Lipschitz function \tilde{F} and Fourier expand.

Idea of proof

The

■ Let $F(\vec{x}, \vec{y})=e\left(\sum_{i} k_{i} x_{i} y_{i}\right)$. Then we have $F\left(\{\alpha h+\gamma\},\left\{\beta n+\gamma^{\prime}\right\}\right)$ is the expression we want to study.

- Approximate F with Lipschitz function \tilde{F} and Fourier expand.
- Doesn't always work, since $\left\{h:\left\|\alpha_{i} h+\gamma_{i}-1 / 2\right\|_{\mathbb{R} / \mathbb{Z}} \approx 0\right\}$ might have a lot of elements.

Idea of proof

The

■ Let $F(\vec{x}, \vec{y})=e\left(\sum_{i} k_{i} x_{i} y_{i}\right)$. Then we have $F\left(\{\alpha h+\gamma\},\left\{\beta n+\gamma^{\prime}\right\}\right)$ is the expression we want to study.

- Approximate F with Lipschitz function \tilde{F} and Fourier expand.
■ Doesn't always work, since $\left\{h:\left\|\alpha_{i} h+\gamma_{i}-1 / 2\right\|_{\mathbb{R} / \mathbb{Z}} \approx 0\right\}$ might have a lot of elements.

■ To remedy this, just approximate along subprogressions.

End of the proof

The equidistribution of nilsequences

James Leng

Iteration now works and gives

$$
\begin{gathered}
\left(\delta_{j}, M_{j}, K_{j}, N_{j}, L_{j}, q_{j}\right) \\
=\left(\delta_{j-1} / 4, M_{j-1},\left(2 q_{j-1} K_{1} / 2^{d}\right)^{O\left(j d^{2}\right)}, N_{j-1} /\left(L_{j-1} q_{j-1}\right),\right. \\
\left.j L_{j-1}\left(\delta_{j-1} / 2^{d} M\right)^{-O(d)},\left(\delta_{j-1} / 2^{d} M\right)^{-O(d)} q_{j-1}\right)
\end{gathered}
$$

