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Green-Tao Theorem

Theorem

For each positive integer k > 0, the primes contain a
progression of the form
(x , x + y , x + 2y , . . . , x + (k − 1)y).

How many k-term arithmetic progressions in primes are
there up to [N]?
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Counting kAPs in Primes

We should study∑
n,d≤N

1P(n)1P(n + d)1P(n + 2d) · · · 1P(n + (k − 1)d).

In view of
∑

n∈[N] Λ(n) = n + o(n) (the prime number

theorem), it turns out to be more convenient to count∑
n,d≤N

Λ(n)Λ(n + d)Λ(n + 2d) · · ·Λ(n + (k − 1)d)

where

Λ(n) =

{
log(p) n = pk

0 otherwise
.
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Main term-error term

Getting exact formula seems difficult. Estimating seems
more approachable. Want to obtain an asymptotic:

[Count of kAPs in primes] = [Main term] + [Error term].

Can think of Λ as “normalized counting measure”
representing the primes.

If Λ behaves like a uniform distribution,∑
n,d

Λ(n)Λ(n + d) · · ·Λ(n + (k − 1)d) ≈ N2.

But prime numbers are not “roughly uniformly
distributed.”
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Pseudorandomness

It’s far more likely for a prime to be odd than be
even.

It’s far more likely for primes to be 1 (mod 3) or 2
(mod 3) than 0 (mod 3).

Main term should be “relatively simple” and should
take into account these local obstructions.

There are other things to watch out for.
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Example

Suppose p = 3. The projection of the distribution
(mod 3) that (x , x + y , x + 2y) are prime should not
be expected to be the same as when (x , x + y) are
prime.

If x ≡ 1 (mod 3) and x + y ≡ 2 (mod 3), then
x + 2y ≡ 0 (mod 3).

Otherwise, (x , x + y , x + 2y) should equidistribute
across moduli (a, b, 2b − a) where all a, b, 2b − a
are nonzero moduli, i.e. (1, 1, 1), (2, 2, 2).

The distribution of moduli (mod 3) of (x , x + y)
are (1, 1), (1, 2), (2, 1), (2, 2).
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Granville’s Model

Rough numbers (numbers without small prime factors)
also “equidistribute” across nonzero a (mod p), and can
also detect local obstructions across correlations.

Define

P(Q) =
∏
p≤Q

p

ΛQ(n) =
P(Q)

φ(P(Q))
1gcd(n,P(Q))=1

where φ(n) is the number of positive integers less than n
that are relatively prime to n, Q(N) a sufficiently slow
growing function in N .
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Granville’s Model

Note: we can factor

ΛQ(n) =
∏
p≤Q

p

p − 1
1gcd(n,p)=1 :=

∏
p≤Q

Λp(n).

By the Chinese Remainder Theorem, we get∑
n,d≤N

ΛQ(n)ΛQ(n + d) · · ·ΛQ(n + (k − 1)d) =

N2
∏
p≤Q

1

N2

∑
n,d≤N

Λp(n) · · ·Λp(n+(k−1)d)+[Error Term].
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Main term-error term

Let
βp = En∈Z/pZΛp(n) · · ·Λp(n + (k − 1)d).

≈ 1

N2

∑
n∈[N]

Λp(n) · · ·Λp(n + (k − 1)d).

Thus, expect main term to be SkN
2 where

N2
∏
p≤Q

βp ≈ N2
∏
p

βp := SkN
2

and error terms to be small, i.e., we should expect∑
n,d≤N

Λ(n)Λ(n + d) · · ·Λ(n + (k − 1)d)

−
∑
n,d≤N

ΛQ(n) · · ·ΛQ(n + (k − 1)d) = o(N2).
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Results

For k = 3, this was proven by van der Corput using
Fourier analysis in 1939.

Theorem (Green-Tao, Green-Tao, Green-Tao-Ziegler ∼
2010)

∑
n,d≤N

Λ(n)Λ(n + d) · · ·Λ(n + (k − 1)d) = SkN
2 + o(N2)

with

βp =

{
pk−2(p+1−k)

(p−1)k−1 p > k
pk−2

(p−1)k−1 p ≤ k
.
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More general result

Can obtain a similar asymptotic for counts of linear forms
φ1(n), · · ·φk(n) where φi don’t differ by a constant:∑

~n∈K

Λ(φ1(~n)) · · ·Λ(φk(~n)) =

∏
p≤Q

∑
~n∈K

Λp(φ1(~n)) · · ·Λp(φk(~n)) + o(Nd)

= β∞
∏
p

βp + o(Nd)

where K ⊆ [N]d = {1, . . . ,N}d is convex and β∞ is the
volume of K.
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Quantitative Bounds

A natural question is: can we say a bit more about
o(Nd)?

van der Corput showed for any A > 0∑
n,d

Λ(n)Λ(n + d)Λ(n + 2d) = S3N
2 + OA(N2 log−A(N))

The constant in front of log−A(N) is ineffective
(Siegel’s Theorem).

Theorem (Tao-Teräväinen, 2021)

∑
n,d

Λ(n) · · ·Λ(n + (k − 1)d) = SkN
2 + O(

N2

log log(N)c
)
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Quantitative bounds

Theorem (L. 2023)

For any A > 0, we have∑
n,d

Λ(n) · · ·Λ(n + 3d) = SkN
2 + OA(

N2

logA(N)
)

constant in front of log−A(N) is ineffective for the same
reason as van der Corput’s result.
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Remarks

van der Corput’s and L.’s result obtains similar
asymptotics for linear forms with true complexity
one and two (respectively)

That is, forms φ1, . . . , φk(n) such that are not
linearly independent but that φ⊗2

1 , · · · , φ⊗2
k are

linearly independent (true complexity 1)

Forms φ1, . . . , φk that are not linearly independent,
φ⊗2

1 , · · · , φ⊗2
k also not linearly independent, but

φ⊗3
1 , · · · , φ⊗3

k are linearly independent (true
complexity 2).

Follows from (very difficult) work of Manners
(2021).
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APs with shifted primes

Via the W-trick, we can show that

Theorem (Tao-Teräväinen 2021)

Suppose a subset A ⊆ [N] doesn’t contain any k-term
arithmetic progressions of the form
(x , x + p − 1, . . . , x + (k − 1)(p − 1)) where p is any
prime. Then |A| � N log log log log−c(N).

For k = 2, can take bounds of N1−c (Green 2022). For
k = 3 can take N exp(−O(log log log(N)c)) and for
k = 4 can take N log log log−c(N).
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3APs with shifted primes

By assuming non-existence of Siegel zeros, we can
improve the bounds for k = 3:

Theorem (L. 2023)

Assume (Landau)-Siegel zeros don’t exist. Suppose a
subset A ⊆ [N] doesn’t contain any 3-term arithmetic
progressions of the form (x , x + p − 1, x + 2(p − 1))
where p is any prime. Then
|A| � N exp(−O(log logc(N))).

Though it may be possible to unconditionally show that

|A| � N log−c(N).
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Limitations of Fourier analysis

(a modern rendition of) van der Corput’s (or rather
Vinogradov’s) proof is based on Fourier analysis
and uses Vaughan-type bilinear decompositions of Λ
to produce cancellation in phase.

Fourier analysis can see linear relations such as
(x + 2y) = 2(x + y)− x .

It can’t detect quadratic relations such as
(x + 3y)2 − 3(x + 2y)2 + 3(x + y)2 − x2 = 0.
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Gowers norms

‖f ‖2
U1(Z) :=

∣∣∣∣∣∑
n,h∈Z

f (n)f (n + h)

∣∣∣∣∣ =

∣∣∣∣∣∑
n

f (n)

∣∣∣∣∣
2

‖f ‖4
U2(Z) :=

∣∣∣∣∣ ∑
n,h1,h2∈Z

f (n)f (n + h1)f (n + h2)f (n + h1 + h2)

∣∣∣∣∣
We can rewrite as ∣∣∣∣∣ ∑

n,h1,h2

∆h1,h2f (n)

∣∣∣∣∣
where ∆hf (n) = f (n + h)f (n),
∆h1,h2f (n) = ∆h1(∆h2f (n)).



Improved
quadratic Gowers
uniformity for the

von Mangoldt
function

James Leng

Gowers norms

‖f ‖2
U1(Z) :=

∣∣∣∣∣∑
n,h∈Z

f (n)f (n + h)

∣∣∣∣∣ =

∣∣∣∣∣∑
n

f (n)

∣∣∣∣∣
2

‖f ‖4
U2(Z) :=

∣∣∣∣∣ ∑
n,h1,h2∈Z

f (n)f (n + h1)f (n + h2)f (n + h1 + h2)

∣∣∣∣∣

We can rewrite as ∣∣∣∣∣ ∑
n,h1,h2

∆h1,h2f (n)

∣∣∣∣∣
where ∆hf (n) = f (n + h)f (n),
∆h1,h2f (n) = ∆h1(∆h2f (n)).



Improved
quadratic Gowers
uniformity for the

von Mangoldt
function

James Leng

Gowers norms

‖f ‖2
U1(Z) :=

∣∣∣∣∣∑
n,h∈Z

f (n)f (n + h)

∣∣∣∣∣ =

∣∣∣∣∣∑
n

f (n)

∣∣∣∣∣
2

‖f ‖4
U2(Z) :=

∣∣∣∣∣ ∑
n,h1,h2∈Z

f (n)f (n + h1)f (n + h2)f (n + h1 + h2)

∣∣∣∣∣
We can rewrite as ∣∣∣∣∣ ∑

n,h1,h2

∆h1,h2f (n)

∣∣∣∣∣
where ∆hf (n) = f (n + h)f (n),
∆h1,h2f (n) = ∆h1(∆h2f (n)).



Improved
quadratic Gowers
uniformity for the

von Mangoldt
function

James Leng

Gowers norms

So we define

‖f ‖2s+1

Us+1(Z) :=

∣∣∣∣∣∣
∑

n,h1,...,hs+1

∆h1,...,hs+1f (n)

∣∣∣∣∣∣
and we define

‖f ‖Us+1([N]) =
‖f 1[N]‖Us+1(Z)

‖1[N]‖Us+1(Z)

.

We can verify that these are norms (except U1)
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Generalized von Neumann Theorem

It can be shown that ‖f ‖U2([N]) ≈ N−3/4‖f̂ ‖L4(T).

This
complements

Theorem (Gowers 2001)

For one-bounded f1, . . . , fk∣∣∣∣∣ 1

N2

∑
n,d

f1(n)f2(n + d) · · · fk(n + (k − 1)d)

∣∣∣∣∣�
min
i
‖fi‖Uk−1([N]).

since obstructions to U2([N]) being small are Fourier
phases and hence explains van der Corput’s approach.
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Generalized von Neumann Theorem

Writing Λ = (Λ− ΛQ) + ΛQ , we obtain∑
n,d

Λ(n)Λ(n + d) · · ·Λ(n + (k − 1)d)

−
∑
n,d

ΛQ(n)ΛQ(n + d) · · ·ΛQ(n + (k − 1)d)

is 2k − 1 terms; each term has one term equal to
Λ− ΛQ .

Thus, we want to prove that

‖Λ− ΛQ‖Us+1([N])

is small.
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Inverse Theorem

A natural question is: what are obstructions to
U s+1([N]) norm being small?

Theorem (Green-Tao-Ziegler)

Suppose ‖f ‖Us+1([N]) ≥ δ. Then there exists a degree ≤ s
nilsequence F (g(n)Γ) with parameter P(δ),
dimension D(δ) and complexity M(δ) such that

|En∈[N]f (n)F (g(n)Γ)| �δ,s 1.

A nilmanifold G/Γ is a topological quotient of a
nilpotent Lie group G by a discrete cocompact subgroup
Γ. A polynomial sequence g(n) is a certain degree ≤ s
“nice sequence” and F : G/Γ→ C a Lipschitz function.



Improved
quadratic Gowers
uniformity for the

von Mangoldt
function

James Leng

Inverse Theorem

A natural question is: what are obstructions to
U s+1([N]) norm being small?

Theorem (Green-Tao-Ziegler)

Suppose ‖f ‖Us+1([N]) ≥ δ. Then there exists a degree ≤ s
nilsequence F (g(n)Γ) with parameter P(δ),
dimension D(δ) and complexity M(δ) such that

|En∈[N]f (n)F (g(n)Γ)| �δ,s 1.

A nilmanifold G/Γ is a topological quotient of a
nilpotent Lie group G by a discrete cocompact subgroup
Γ. A polynomial sequence g(n) is a certain degree ≤ s
“nice sequence” and F : G/Γ→ C a Lipschitz function.



Improved
quadratic Gowers
uniformity for the

von Mangoldt
function

James Leng

Example

G = Rd , Γ = Zd , let P1, . . . ,Pd ∈ R[x ]. Let
F : G/Γ→ C be a smooth function. Let
g(n) = (P1(n), . . . ,Pd(n)). An example of a nilsequence
is

F (g(n)Γ) = F (P1(n), . . . ,Pd(n)).

For example, e2πi
√

2n2
is a nilsequence.



Improved
quadratic Gowers
uniformity for the

von Mangoldt
function

James Leng

Another Example

Nilpotent Lie Group ≈ unipotent matrices.

G =

1 R R
0 1 R
0 0 1

 , Γ =

1 Z Z
0 1 Z
0 0 1



g(n) =

1 α γ
0 1 β
0 0 1

n

=

1 αn γn +
(
n
2

)
αβ

0 1 βn
0 0 1


Fundamental domain
ψ(x , y , z) 7→ ({x}, {y}, {z − xbyc}). Can take Lipschitz
function F (x , y , z) = e(ψ3)ϕ({y}) for cutoff ϕ.

F (g(n)Γ) = e2πi(−αnbβnc+(n
2)αβ+γn)ϕ(βn).
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Nilsequences

Nilsequences are a combination of the above two
examples.

For simplicity, can think of n 7→ e2πiP(n) as a
nilsequence.

Even simpler n 7→ e2πiαn.
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Applying the Generalized von Neumann

Theorem

It can be reduced to show that (Tao-Teräväinen, 2021)

‖Λ− ΛQ‖Us+1([N]) � log log(N)−c

or (L. 2023)

‖Λ− ΛQ‖U3([N]) �ineff
A log−A(N).

A couple of obstructions remain.
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Obstructions to quantitative bounds

Green-Tao-Ziegler’s result is qualitative.

U3 inverse theorem is effective and relatively
simple.
Manners (2018) fixes this, though proof is very
hard and gives double exponential bounds.

Siegel’s theorem is ineffective (subtle issue).

Can fix this by subtracting the “contribution” of
the possible Siegel zero χSiegel(n)nβ−1ΛQ (where β
is the Siegel zero).
Can evaluate
‖χ(n)nβ−1ΛQ‖Us+1([N]) ∼ ‖χ‖Us+1([N]) directly to
obtain cancellation.
For simplicity, assume Landau-Siegel zeros don’t
exist.
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Obstructions to quantitative bounds

In (Tao-Teräväinen, 2021), show
‖Λ− ΛQ‖Us+1([N]) � log log(N)−c .

In (L. 2023), show
‖Λ− ΛQ‖U3([N]) � exp(−O(log(N)c)).
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Applying the Inverse Theorem

It can be reduced to show (Tao-Teräväinen 2021):

En∈[N](Λ− ΛQ)(n)F (g(n)Γ)� exp(−O(logc(N)))

for g(n)Γ having dimension d = log log(N)c and
complexity exp(O(exp(dO(1))))

or (L. 2023)

En∈[N](Λ− ΛQ)(n)F (g(n)Γ)� exp(−O(logc(N)))

where d = log(N)c and complexity exp(O(d)O(1))
(actually can take complexity to be O(d)O(1)).
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Type I and type II reduction

Using Vaughan’s decomposition, we are reduced to
showing for certain nilsequences

Type I estimate:

En∈[N],n≡0 (mod d)F (g(n)Γ)� exp(−O(logc(N)))

for “most” d ∈ [D, 2D] with D ≤ N2/3 (actually, for
(L. 2023) must take D ≤ exp(O(logc(N))))

Type II estimate: for A,D with AD ∼ N and
N1/3 ≤ D ≤ N2/3

Ea,a′∈[A,2A],d ,d ′∈[D,2D]F (g(ad)Γ)F (g(a′d)Γ)F (g(ad ′)Γ)

F (g(a′d ′)Γ)� exp(−O(log(N)c)).
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Vinogradov’s Proof

Vinogradov’s Proof boils down to showing that if α is
“very irrational”, then

En∈[N],n≡0 (mod d)e
2πiαn � exp(−O(logc(N)))

for “most” d ∈ [D, 2D]

or

Ea,a′∈[A,2A],d ,d ′∈[D,2D]e
2πiα(a−a′)(d−d ′) � exp(−O(log(N)c)).

So suppose for “many” d ∈ [D, 2D] that

En∈[N],n≡0 (mod d)e
2πiαn � exp(−O(logc(N)))

or

Ea,a′∈[A,2A],d ,d ′∈[D,2D]e
2πiα(a−a′)(d−d ′) � exp(−O(log(N)c))
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Vinogradov’s Proof

En∈[N],n≡0 (mod d)e
2πiαn ≈ Ea∈[N/d ]e

2πiαad

= O(
D

N‖adα‖R/Z
).

Or that

‖adα‖R/Z � exp(O(log(N)c))D/N .

This shows that α can’t be “very irrational.” Similar
computation for type II.
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Example 1

Want to obtain cancellation of a sum of an orbit along a
nilmanifold.

En∈[N]e
2πiαn =

1

N

e2πi(N+1)α − 1

e2πiα − 1

If α = O(1/N) (mod 1), expect sum to be large.
Otherwise, expect sum to be small.
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Example 2

Let F : S1 → C be smooth

En∈[N]F (αn) =

∫
S1

F (θ)dθ + [Error]

Expect error term to be small if α is irrational.
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Example 3

Let F : Td → C be smooth.

En∈[N]F (α1n, α2n, . . . , αdn) =∫
Td

F (θ1, . . . , θd)dθ1 . . . dθd + [Error].

For generic (α1, . . . , αd) expect error to be small.

It’s
possible that (α1, . . . , αd) can lie in a subgroup. This
can make the error large.
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Equidistribution on nilmanifolds

Common thread is an equidistribution theory.

You get cancellation of the sum along your orbit if
your orbit equidistributes, but if not, you can hope
to say that your orbit is simpler.

Classical theory of Leon Green and Leibman indicate
that either a polynomial sequence g(n)Γ
“equidistributes” on the nilmanifold, or there exists
an algebraic obstruction, i.e. it lies in some
subnilmanifold.

Green-Tao give a quantitative equidistribution
theorem.

Tao-Teräväinen work out explicit bounds for
Green-Tao, obtaining losses double exponential in
dimension.
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Improvements over Tao-Teräväinen

Tao-Teräväinen lose two logarithms coming from
Manners’ inverse theorem.

Sanders’ (2012) U3 inverse theorem gives those two
logarithms back.

Tao-Teräväinen also lose two logarithms from the
equidistribution theory of nilmanifolds.

Inserting Sanders’ result makes those two logarithms
loss into a one logarithm loss.

Gowers-Wolf (2010) (and also Green-Tao (2007,
2017)) give a way to equidistribute on two-step
nilmanifolds without that one logarithm loss.
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More details about the proof

Gowers-Wolf’s approach tells you that for “many”
d ∈ [D, 2D], F (g(ad)Γ) is roughly constant on
some Bohr set.

Goal is to show that this means that F (g(n)Γ) is
roughly constant on a Bohr set. Via a
Vinogradov-type lemma, we need a good lower
bound for ⋃

d∈D

Bd

where Bd = {n ∈ B : n ≡ 0 (mod d)} and D are
the values of d that F (g(ad)Γ) are constant and B
the Bohr set.
Seems difficult to show. (In Fp[T ], Bienvenu and Le
need bilinear Bogolyubov and some tricky matrix
analysis).
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More details about the proof

In a type II sum, can get “cancellation” in both a
and d variables, allowing one to prove something
stronger: that F (g(ad)Γ) is roughly a “rational
phase with bounded denominator” along Bd for
every d in some interval I = [K , 2K ].

Can estimate
⋃

d∈I Bd efficiently via the second
moment method by restricting to the primes in I .

For the type I sum, convert the case of when d is
large to the type II case.

For d small in the type I case, get enough
cancellation in one variable to prove the theorem
anyways.
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Remarks and Loose Threads

In (L. 2023), “most” of the cancellation/gain comes
from analyzing the type II sum. By summing over d
in a type I sum with large D, we convert the large D
case to a type II sum.

The Gowers-Wolf approach tells you that along a
“nice set”, your nilsequence is roughly constant.
However, we analyze

EaF (g(ad)Γ).

Unclear in that framework what happens when you
sample through many d .

Can this method generalize to higher step
nilsequences to obtain single exponential losses in
dimension?
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Update

L. has proved a generalized equidistribution of
nilsequences that gives good bounds for higher
degree nilsequences. See
https://arxiv.org/abs/2306.13820.

Conditional on the quasi-polynomial U s+1(Z/NZ)
inverse theorem, the higher order Möbius and von
Mangoldt uniformity estimates with similar bounds
can be shown.

https://arxiv.org/abs/2306.13820
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Thank you!

Joni Teräväinen’s slides: https://drive.google.com/

file/d/1DdvWyGVlCjvpMOyEr-q0lqs4o0fcBKuw/view

https://drive.google.com/file/d/1DdvWyGVlCjvpMOyEr-q0lqs4o0fcBKuw/view
https://drive.google.com/file/d/1DdvWyGVlCjvpMOyEr-q0lqs4o0fcBKuw/view

