Improved quadratic Gowers uniformity for the von Mangoldt function

James Leng

Improved quadratic Gowers uniformity for the von Mangoldt function

James Leng

July 26, 2023

Green-Tao Theorem

Theorem

For each positive integer $k>0$, the primes contain a progression of the form
$(x, x+y, x+2 y, \ldots, x+(k-1) y)$.
How many k-term arithmetic progressions in primes are there up to $[N]$?

Counting kAPs in Primes

Improved quadratic Gowers uniformity for the von Mangoldt
function

James Leng

We should study

$$
\sum_{n, d \leq N} 1_{P}(n) 1_{P}(n+d) 1_{P}(n+2 d) \cdots 1_{P}(n+(k-1) d)
$$

Counting kAPs in Primes

Improved quadratic Gowers uniformity for the von Mangoldt
function

James Leng

We should study

$$
\sum_{n, d \leq N} 1_{P}(n) 1_{P}(n+d) 1_{P}(n+2 d) \cdots 1_{P}(n+(k-1) d)
$$

In view of $\sum_{n \in[N]} \Lambda(n)=n+o(n)$ (the prime number theorem), it turns out to be more convenient to count

$$
\sum_{n, d \leq N} \Lambda(n) \Lambda(n+d) \wedge(n+2 d) \cdots \Lambda(n+(k-1) d)
$$

where

$$
\Lambda(n)= \begin{cases}\log (p) & n=p^{k} \\ 0 & \text { otherwise }\end{cases}
$$

Main term-error term

James Leng

Getting exact formula seems difficult. Estimating seems more approachable. Want to obtain an asymptotic:
$[$ Count of kAPs in primes $]=[$ Main term $]+[$ Error term $]$.

Main term-error term

James Leng

Getting exact formula seems difficult. Estimating seems more approachable. Want to obtain an asymptotic:
$[$ Count of kAPs in primes $]=[$ Main term $]+[$ Error term $]$.

■ Can think of Λ as "normalized counting measure" representing the primes.

Main term-error term

James Leng

Getting exact formula seems difficult. Estimating seems more approachable. Want to obtain an asymptotic:
[Count of kAPs in primes $]=[$ Main term $]+[$ Error term $]$.

- Can think of Λ as "normalized counting measure" representing the primes.
- If \wedge behaves like a uniform distribution,

$$
\sum_{n, d} \Lambda(n) \wedge(n+d) \cdots \wedge(n+(k-1) d) \approx N^{2} .
$$

Main term-error term

James Leng

Getting exact formula seems difficult. Estimating seems more approachable. Want to obtain an asymptotic:
[Count of kAPs in primes $]=[$ Main term $]+[$ Error term $]$.

- Can think of Λ as "normalized counting measure" representing the primes.
- If \wedge behaves like a uniform distribution,

$$
\sum_{n, d} \Lambda(n) \wedge(n+d) \cdots \wedge(n+(k-1) d) \approx N^{2} .
$$

- But prime numbers are not "roughly uniformly distributed."

Pseudorandomness

■ It's far more likely for a prime to be odd than be even.

Pseudorandomness

■ It's far more likely for a prime to be odd than be even.

■ It's far more likely for primes to be $1(\bmod 3)$ or 2 $(\bmod 3)$ than $0(\bmod 3)$.

Pseudorandomness

James Leng

■ It's far more likely for a prime to be odd than be even.

■ It's far more likely for primes to be $1(\bmod 3)$ or 2 $(\bmod 3)$ than $0(\bmod 3)$.
■ Main term should be "relatively simple" and should take into account these local obstructions.

Pseudorandomness

James Leng

■ It's far more likely for a prime to be odd than be even.

■ It's far more likely for primes to be $1(\bmod 3)$ or 2 $(\bmod 3)$ than $0(\bmod 3)$.
■ Main term should be "relatively simple" and should take into account these local obstructions.

■ There are other things to watch out for.

Example

James Leng

■ Suppose $p=3$. The projection of the distribution $(\bmod 3)$ that $(x, x+y, x+2 y)$ are prime should not be expected to be the same as when $(x, x+y)$ are prime.

Example

James Leng

- Suppose $p=3$. The projection of the distribution $(\bmod 3)$ that $(x, x+y, x+2 y)$ are prime should not be expected to be the same as when $(x, x+y)$ are prime.
- If $x \equiv 1(\bmod 3)$ and $x+y \equiv 2(\bmod 3)$, then $x+2 y \equiv 0(\bmod 3)$.

Example

James Leng

■ Suppose $p=3$. The projection of the distribution $(\bmod 3)$ that $(x, x+y, x+2 y)$ are prime should not be expected to be the same as when $(x, x+y)$ are prime.

- If $x \equiv 1(\bmod 3)$ and $x+y \equiv 2(\bmod 3)$, then $x+2 y \equiv 0(\bmod 3)$.
- Otherwise, $(x, x+y, x+2 y)$ should equidistribute across moduli $(a, b, 2 b-a)$ where all $a, b, 2 b-a$ are nonzero moduli, i.e. $(1,1,1),(2,2,2)$.
- The distribution of moduli $(\bmod 3)$ of $(x, x+y)$ are (1,1), (1,2), (2, 1), (2, 2).

Granville's Model

James Leng

Rough numbers (numbers without small prime factors) also "equidistribute" across nonzero a $(\bmod p)$, and can also detect local obstructions across correlations.

Granville's Model

Rough numbers (numbers without small prime factors) also "equidistribute" across nonzero a $(\bmod p)$, and can also detect local obstructions across correlations. Define

$$
\begin{gathered}
P(Q)=\prod_{p \leq Q} p \\
\Lambda_{Q}(n)=\frac{P(Q)}{\phi(P(Q))} 1_{\operatorname{gcd}(n, P(Q))=1}
\end{gathered}
$$

where $\phi(n)$ is the number of positive integers less than n that are relatively prime to $n, Q(N)$ a sufficiently slow growing function in N.

Granville's Model

Improved quadratic Gowers uniformity for the von Mangoldt function

James Leng

Note: we can factor

$$
\Lambda_{Q}(n)=\prod_{p \leq Q} \frac{p}{p-1} 1_{\operatorname{gcd}(n, p)=1}:=\prod_{p \leq Q} \Lambda_{p}(n)
$$

Granville's Model

James Leng

Note: we can factor

$$
\Lambda_{Q}(n)=\prod_{p \leq Q} \frac{p}{p-1} 1_{\operatorname{gcd}(n, p)=1}:=\prod_{p \leq Q} \Lambda_{p}(n)
$$

By the Chinese Remainder Theorem, we get

$$
\sum_{n, d \leq N} \Lambda_{Q}(n) \Lambda_{Q}(n+d) \cdots \Lambda_{Q}(n+(k-1) d)=
$$

$N^{2} \prod_{p \leq Q} \frac{1}{N^{2}} \sum_{n, d \leq N} \Lambda_{p}(n) \cdots \Lambda_{p}(n+(k-1) d)+[$ Error Term $]$.

Main term-error term

Improved quadratic Gowers uniformity for the von Mangoldt function

James Leng

Let

$$
\begin{aligned}
\beta_{p} & =\mathbb{E}_{n \in \mathbb{Z} / p \mathbb{Z}} \Lambda_{p}(n) \cdots \Lambda_{p}(n+(k-1) d) \\
& \approx \frac{1}{N^{2}} \sum_{n \in[N]} \Lambda_{p}(n) \cdots \Lambda_{p}(n+(k-1) d)
\end{aligned}
$$

Main term-error term

Improved quadratic Gowers uniformity for the von Mangoldt
function
James Leng

Let

$$
\begin{aligned}
& \beta_{p}=\mathbb{E}_{n \in \mathbb{Z} / p \mathbb{Z}} \Lambda_{p}(n) \cdots \Lambda_{p}(n+(k-1) d) \\
& \approx \frac{1}{N^{2}} \sum_{n \in[N]} \Lambda_{p}(n) \cdots \Lambda_{p}(n+(k-1) d)
\end{aligned}
$$

Thus, expect main term to be $\mathfrak{S}_{k} N^{2}$ where

$$
N^{2} \prod_{p \leq Q} \beta_{p} \approx N^{2} \prod_{p} \beta_{p}:=\mathfrak{S}_{k} N^{2}
$$

and error terms to be small, i.e., we should expect

$$
\begin{aligned}
& \sum_{n, d \leq N} \Lambda(n) \wedge(n+d) \cdots \Lambda(n+(k-1) d) \\
- & \sum_{n, d \leq N} \Lambda_{Q}(n) \cdots \Lambda_{Q}(n+(k-1) d)=o\left(N^{2}\right)
\end{aligned}
$$

Results

Improved quadratic Gowers uniformity for the von Mangoldt function

James Leng

For $k=3$, this was proven by van der Corput using
Fourier analysis in 1939.
Theorem (Green-Tao, Green-Tao, Green-Tao-Ziegler ~ 2010)

$$
\sum_{n, d \leq N} \Lambda(n) \Lambda(n+d) \cdots \Lambda(n+(k-1) d)=\mathfrak{S}_{k} N^{2}+o\left(N^{2}\right)
$$

with

$$
\beta_{p}=\left\{\begin{array}{ll}
\frac{p^{k-2}(p+1-k)}{(p-1)^{k-1}} & p>k \\
\frac{p^{k-2}}{(p-1)^{k-1}} & p \leq k
\end{array} .\right.
$$

More general result

James Leng

Can obtain a similar asymptotic for counts of linear forms $\phi_{1}(n), \cdots \phi_{k}(n)$ where ϕ_{i} don't differ by a constant:

$$
\begin{gathered}
\sum_{\vec{n} \in \mathbf{K}} \Lambda\left(\phi_{1}(\vec{n})\right) \cdots \Lambda\left(\phi_{k}(\vec{n})\right)= \\
\prod_{p \leq Q} \sum_{\vec{n} \in \mathbf{K}} \Lambda_{p}\left(\phi_{1}(\vec{n})\right) \cdots \Lambda_{p}\left(\phi_{k}(\vec{n})\right)+o\left(\Lambda^{d}\right) \\
=\beta_{\infty} \prod_{p} \beta_{p}+o\left(N^{d}\right)
\end{gathered}
$$

where $\mathbf{K} \subseteq[N]^{d}=\{1, \ldots, N\}^{d}$ is convex and β_{∞} is the volume of \mathbf{K}.

Quantitative Bounds

Improved quadratic Gowers uniformity for the von Mangoldt function

James Leng

A natural question is: can we say a bit more about $o\left(N^{d}\right)$?

Quantitative Bounds

James Leng

A natural question is: can we say a bit more about $o\left(N^{d}\right)$? van der Corput showed for any $A>0$
$\sum_{n, d} \Lambda(n) \Lambda(n+d) \Lambda(n+2 d)=\mathfrak{S}_{3} N^{2}+O_{A}\left(N^{2} \log ^{-A}(N)\right)$
The constant in front of $\log ^{-A}(N)$ is ineffective (Siegel's Theorem).

Quantitative Bounds

James Leng

A natural question is: can we say a bit more about $o\left(N^{d}\right)$? van der Corput showed for any $A>0$

$$
\sum_{n, d} \Lambda(n) \Lambda(n+d) \Lambda(n+2 d)=\mathfrak{S}_{3} N^{2}+O_{A}\left(N^{2} \log ^{-A}(N)\right)
$$

The constant in front of $\log ^{-A}(N)$ is ineffective (Siegel's Theorem).

Theorem (Tao-Teräväinen, 2021)

$$
\sum_{n, d} \Lambda(n) \cdots \Lambda(n+(k-1) d)=\mathfrak{S}_{k} N^{2}+O\left(\frac{N^{2}}{\log \log (N)^{c}}\right)
$$

Quantitative bounds

James Leng

Theorem (L. 2023)

For any $A>0$, we have

$$
\sum_{n, d} \Lambda(n) \cdots \wedge(n+3 d)=\mathfrak{S}_{k} N^{2}+O_{A}\left(\frac{N^{2}}{\log ^{A}(N)}\right)
$$

constant in front of $\log ^{-A}(N)$ is ineffective for the same reason as van der Corput's result.

Remarks

James Leng

■ van der Corput's and L.'s result obtains similar asymptotics for linear forms with true complexity one and two (respectively)

Remarks

James Leng

■ van der Corput's and L.'s result obtains similar asymptotics for linear forms with true complexity one and two (respectively)
■ That is, forms $\phi_{1}, \ldots, \phi_{k}(n)$ such that are not linearly independent but that $\phi_{1}^{\otimes 2}, \cdots, \phi_{k}^{\otimes 2}$ are linearly independent (true complexity 1)

Remarks

■ van der Corput's and L.'s result obtains similar asymptotics for linear forms with true complexity one and two (respectively)
■ That is, forms $\phi_{1}, \ldots, \phi_{k}(n)$ such that are not linearly independent but that $\phi_{1}^{\otimes 2}, \cdots, \phi_{k}^{\otimes 2}$ are linearly independent (true complexity 1)
$■$ Forms $\phi_{1}, \ldots, \phi_{k}$ that are not linearly independent, $\phi_{1}^{\otimes 2}, \cdots, \phi_{k}^{\otimes 2}$ also not linearly independent, but $\phi_{1}^{\otimes 3}, \cdots, \phi_{k}^{\otimes 3}$ are linearly independent (true complexity 2).

Remarks

James Leng

■ van der Corput's and L.'s result obtains similar asymptotics for linear forms with true complexity one and two (respectively)
■ That is, forms $\phi_{1}, \ldots, \phi_{k}(n)$ such that are not linearly independent but that $\phi_{1}^{\otimes 2}, \cdots, \phi_{k}^{\otimes 2}$ are linearly independent (true complexity 1)
■ Forms $\phi_{1}, \ldots, \phi_{k}$ that are not linearly independent, $\phi_{1}^{\otimes 2}, \cdots, \phi_{k}^{\otimes 2}$ also not linearly independent, but $\phi_{1}^{\otimes 3}, \cdots, \phi_{k}^{\otimes 3}$ are linearly independent (true complexity 2).
■ Follows from (very difficult) work of Manners (2021).

APs with shifted primes

James Leng

Via the W-trick, we can show that
Theorem (Tao-Teräväinen 2021)
Suppose a subset $A \subseteq[N]$ doesn't contain any k-term arithmetic progressions of the form
$(x, x+p-1, \ldots, x+(k-1)(p-1))$ where p is any prime. Then $|A| \ll N \log \log \log \log ^{-c}(N)$.

For $k=2$, can take bounds of N^{1-c} (Green 2022). For $k=3$ can take $N \exp \left(-O\left(\log \log \log (N)^{c}\right)\right)$ and for $k=4$ can take $N \log \log \log ^{-c}(N)$.

3APs with shifted primes

By assuming non-existence of Siegel zeros, we can improve the bounds for $k=3$:

Theorem (L. 2023)

Assume (Landau)-Siegel zeros don't exist. Suppose a subset $A \subseteq[N]$ doesn't contain any 3-term arithmetic progressions of the form $(x, x+p-1, x+2(p-1))$ where p is any prime. Then
$|A| \ll N \exp \left(-O\left(\log \log ^{c}(N)\right)\right)$.
Though it may be possible to unconditionally show that

$$
|A| \ll N \log ^{-c}(N) .
$$

Limitations of Fourier analysis

James Leng

■ (a modern rendition of) van der Corput's (or rather Vinogradov's) proof is based on Fourier analysis and uses Vaughan-type bilinear decompositions of Λ to produce cancellation in phase.

Limitations of Fourier analysis

James Leng

■ (a modern rendition of) van der Corput's (or rather Vinogradov's) proof is based on Fourier analysis and uses Vaughan-type bilinear decompositions of Λ to produce cancellation in phase.
■ Fourier analysis can see linear relations such as $(x+2 y)=2(x+y)-x$.

Limitations of Fourier analysis

James Leng

- (a modern rendition of) van der Corput's (or rather Vinogradov's) proof is based on Fourier analysis and uses Vaughan-type bilinear decompositions of Λ to produce cancellation in phase.
- Fourier analysis can see linear relations such as $(x+2 y)=2(x+y)-x$.
- It can't detect quadratic relations such as $(x+3 y)^{2}-3(x+2 y)^{2}+3(x+y)^{2}-x^{2}=0$.

Gowers norms

Improved quadratic Gowers uniformity for the von Mangoldt
function

James Leng

$$
\|f\|_{U_{i}(z)}^{2}:=\left|\sum_{n, n \in \mathbb{Z}} f(n) \overline{f(n+h)}\right|=\left|\sum_{n} f(n)\right|^{2}
$$

Gowers norms

function

James Leng

$$
\begin{array}{r}
\|f\|_{U^{1}(\mathbb{Z})}^{2}:=\left|\sum_{n, h \in \mathbb{Z}} f(n) \overline{f(n+h)}\right|=\left|\sum_{n} f(n)\right|^{2} \\
\|f\|_{U^{2}(\mathbb{Z})}^{4}:=\left|\sum_{n, h_{1}, h_{2} \in \mathbb{Z}} f(n) \overline{f\left(n+h_{1}\right) f\left(n+h_{2}\right)} f\left(n+h_{1}+h_{2}\right)\right|
\end{array}
$$

Gowers norms

Improved quadratic Gowers uniformity for the von Mangoldt
function
James Leng

$$
\begin{array}{r}
\|f\|_{U^{1}(\mathbb{Z})}^{2}:=\left|\sum_{n, h \in \mathbb{Z}} f(n) \overline{f(n+h)}\right|=\left|\sum_{n} f(n)\right|^{2} \\
\|f\|_{U^{2}(\mathbb{Z})}^{4}:=\left|\sum_{n, h_{1}, h_{2} \in \mathbb{Z}} f(n) \overline{f\left(n+h_{1}\right) f\left(n+h_{2}\right)} f\left(n+h_{1}+h_{2}\right)\right|
\end{array}
$$

We can rewrite as

$$
\left|\sum_{n, h_{1}, h_{2}} \Delta_{h_{1}, h_{2}} f(n)\right|
$$

where $\Delta_{h} f(n)=\overline{f(n+h)} f(n)$,
$\Delta_{h_{1}, h_{2}} f(n)=\Delta_{h_{1}}\left(\Delta_{h_{2}} f(n)\right)$.

Gowers norms

Improved quadratic Gowers uniformity for the von Mangoldt function

James Leng

So we define

$$
\|f\|_{U^{s+1}(\mathbb{Z})}^{s+1}:=\left|\sum_{n, h_{1}, \ldots, h_{s+1}} \Delta_{h_{1}, \ldots, h_{s+1}} f(n)\right|
$$

and we define

$$
\|f\|_{U^{s+1}([N])}=\frac{\left\|f 1_{[N]}\right\|_{U^{s+1}(\mathbb{Z})}}{\left\|1_{[N]}\right\|_{U^{s+1}(\mathbb{Z})}} .
$$

We can verify that these are norms (except U^{1})

Generalized von Neumann Theorem

Improved quadratic Gowers uniformity for the von Mangoldt function

James Leng

It can be shown that $\|f\|_{U^{2}([N])} \approx N^{-3 / 4}\|\hat{f}\|_{L^{4}(\mathbb{T})}$.

Generalized von Neumann Theorem

James Leng

It can be shown that $\|f\|_{U^{2}([N])} \approx N^{-3 / 4}\|\hat{f}\|_{L^{4}(\mathbb{T})}$. This complements

Theorem (Gowers 2001)
For one-bounded f_{1}, \ldots, f_{k}

$$
\begin{gathered}
\left|\frac{1}{N^{2}} \sum_{n, d} f_{1}(n) f_{2}(n+d) \cdots f_{k}(n+(k-1) d)\right| \ll \\
\min _{i}\left\|f_{i}\right\|_{U^{k-1}([N])} .
\end{gathered}
$$

since obstructions to $U^{2}([N])$ being small are Fourier phases and hence explains van der Corput's approach.

Generalized von Neumann Theorem

James Leng

Writing $\Lambda=\left(\Lambda-\Lambda_{Q}\right)+\Lambda_{Q}$, we obtain

$$
\begin{aligned}
& \sum_{n, d} \Lambda(n) \wedge(n+d) \cdots \wedge(n+(k-1) d) \\
- & \sum_{n, d} \Lambda_{Q}(n) \Lambda_{Q}(n+d) \cdots \Lambda_{Q}(n+(k-1) d)
\end{aligned}
$$

is $2^{k}-1$ terms; each term has one term equal to $\Lambda-\Lambda_{Q}$.

Generalized von Neumann Theorem

James Leng

Writing $\Lambda=\left(\Lambda-\Lambda_{Q}\right)+\Lambda_{Q}$, we obtain

$$
\begin{aligned}
& \sum_{n, d} \Lambda(n) \wedge(n+d) \cdots \wedge(n+(k-1) d) \\
- & \sum_{n, d} \Lambda_{Q}(n) \Lambda_{Q}(n+d) \cdots \Lambda_{Q}(n+(k-1) d)
\end{aligned}
$$

is $2^{k}-1$ terms; each term has one term equal to $\Lambda-\Lambda_{Q}$. Thus, we want to prove that

$$
\left\|\Lambda-\Lambda_{Q}\right\|_{U^{s+1}([N])}
$$

is small.

Inverse Theorem

A natural question is: what are obstructions to $U^{s+1}([N])$ norm being small?

Inverse Theorem

James Leng

A natural question is: what are obstructions to $U^{s+1}([N])$ norm being small?

Theorem (Green-Tao-Ziegler)
Suppose $\|f\|_{U^{s+1}([N])} \geq \delta$. Then there exists a degree $\leq s$ nilsequence $F(g(n) \Gamma)$ with parameter $P(\delta)$, dimension $D(\delta)$ and complexity $M(\delta)$ such that

$$
\left|\mathbb{E}_{n \in[N]} f(n) F(g(n) \Gamma)\right| \gg_{\delta, s} 1
$$

A nilmanifold G / Γ is a topological quotient of a nilpotent Lie group G by a discrete cocompact subgroup Г. A polynomial sequence $g(n)$ is a certain degree $\leq s$ "nice sequence" and $F: G / \Gamma \rightarrow \mathbb{C}_{\square}$ a Lipschitz function.

Example

James Leng
$G=\mathbb{R}^{d}, \Gamma=\mathbb{Z}^{d}$, let $P_{1}, \ldots, P_{d} \in \mathbb{R}[x]$. Let
$F: G / \Gamma \rightarrow \mathbb{C}$ be a smooth function. Let $g(n)=\left(P_{1}(n), \ldots, P_{d}(n)\right)$. An example of a nilsequence is

$$
F(g(n) \Gamma)=F\left(P_{1}(n), \ldots, P_{d}(n)\right) .
$$

For example, $e^{2 \pi i \sqrt{2} n^{2}}$ is a nilsequence.

Another Example

Nilpotent Lie Group \approx unipotent matrices.

Another Example

Improved quadratic Gowers uniformity for the von Mangoldt
function

James Leng

Nilpotent Lie Group \approx unipotent matrices.

$$
G=\left(\begin{array}{ccc}
1 & \mathbb{R} & \mathbb{R} \\
0 & 1 & \mathbb{R} \\
0 & 0 & 1
\end{array}\right), \Gamma=\left(\begin{array}{lll}
1 & \mathbb{Z} & \mathbb{Z} \\
0 & 1 & \mathbb{Z} \\
0 & 0 & 1
\end{array}\right)
$$

Another Example

Improved quadratic Gowers uniformity for the von Mangoldt
function

James Leng

Nilpotent Lie Group \approx unipotent matrices.

$$
\begin{gathered}
G=\left(\begin{array}{ccc}
1 & \mathbb{R} & \mathbb{R} \\
0 & 1 & \mathbb{R} \\
0 & 0 & 1
\end{array}\right), \Gamma=\left(\begin{array}{ccc}
1 & \mathbb{Z} & \mathbb{Z} \\
0 & 1 & \mathbb{Z} \\
0 & 0 & 1
\end{array}\right) \\
g(n)=\left(\begin{array}{ccc}
1 & \alpha & \gamma \\
0 & 1 & \beta \\
0 & 0 & 1
\end{array}\right)^{n}=\left(\begin{array}{ccc}
1 & \alpha n & \gamma n+\binom{n}{2} \alpha \beta \\
0 & 1 & \beta n \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

Another Example

James Leng

Nilpotent Lie Group \approx unipotent matrices.

$$
\begin{gathered}
G=\left(\begin{array}{ccc}
1 & \mathbb{R} & \mathbb{R} \\
0 & 1 & \mathbb{R} \\
0 & 0 & 1
\end{array}\right), \Gamma=\left(\begin{array}{ccc}
1 & \mathbb{Z} & \mathbb{Z} \\
0 & 1 & \mathbb{Z} \\
0 & 0 & 1
\end{array}\right) \\
g(n)=\left(\begin{array}{lll}
1 & \alpha & \gamma \\
0 & 1 & \beta \\
0 & 0 & 1
\end{array}\right)^{n}=\left(\begin{array}{ccc}
1 & \alpha n & \gamma n+\binom{n}{2} \alpha \beta \\
0 & 1 & \beta n \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

Fundamental domain $\psi(x, y, z) \mapsto(\{x\},\{y\},\{z-x\lfloor y\rfloor\})$. Can take Lipschitz function $F(x, y, z)=e\left(\psi_{3}\right) \varphi(\{y\})$ for cutoff φ. $F(g(n) \Gamma)=e^{2 \pi i\left(-\alpha n\lfloor\beta n\rfloor+\binom{n}{2} \alpha \beta+\gamma n\right)} \varphi(\beta n)$.

Nilsequences

Improved quadratic Gowers uniformity for the von Mangoldt function

James Leng

■ Nilsequences are a combination of the above two examples.

Nilsequences

Improved quadratic Gowers uniformity for the von Mangoldt function

James Leng

■ Nilsequences are a combination of the above two examples.

- For simplicity, can think of $n \mapsto e^{2 \pi i P(n)}$ as a nilsequence.

Nilsequences

Improved quadratic Gowers uniformity for the von Mangoldt function

James Leng

■ Nilsequences are a combination of the above two examples.

- For simplicity, can think of $n \mapsto e^{2 \pi i P(n)}$ as a nilsequence.
■ Even simpler $n \mapsto e^{2 \pi i \alpha n}$.

Applying the Generalized von Neumann Theorem

Improved quadratic Gowers uniformity for the von Mangoldt function

James Leng

It can be reduced to show that (Tao-Teräväinen, 2021)

$$
\left\|\Lambda-\Lambda_{Q}\right\|_{U^{s+1}([N])} \ll \log \log (N)^{-c}
$$

Applying the Generalized von Neumann Theorem

James Leng

It can be reduced to show that (Tao-Teräväinen, 2021)

$$
\left\|\Lambda-\Lambda_{Q}\right\|_{U^{s+1}([N])} \ll \log \log (N)^{-c}
$$

or (L. 2023)

$$
\left\|\Lambda-\Lambda_{Q}\right\|_{U^{3}([N])} \ll i_{A}^{\text {ineff }} \log ^{-A}(N)
$$

A couple of obstructions remain.

Obstructions to quantitative bounds

James Leng

■ Green-Tao-Ziegler's result is qualitative.

- U^{3} inverse theorem is effective and relatively simple.
- Manners (2018) fixes this, though proof is very hard and gives double exponential bounds.

Obstructions to quantitative bounds

■ Green-Tao-Ziegler's result is qualitative.

- U^{3} inverse theorem is effective and relatively simple.
- Manners (2018) fixes this, though proof is very hard and gives double exponential bounds.
- Siegel's theorem is ineffective (subtle issue).
- Can fix this by subtracting the "contribution" of the possible Siegel zero $\chi_{\text {Siegel }}(n) n^{\beta-1} \Lambda_{Q}$ (where β is the Siegel zero).
- Can evaluate
$\left\|\chi(n) n^{\beta-1} \Lambda_{Q}\right\|_{U^{s+1}([N])} \sim\|\chi\|_{U^{s+1}([N])}$ directly to obtain cancellation.

Obstructions to quantitative bounds

■ Green-Tao-Ziegler's result is qualitative.

- U^{3} inverse theorem is effective and relatively simple.
- Manners (2018) fixes this, though proof is very hard and gives double exponential bounds.
- Siegel's theorem is ineffective (subtle issue).
- Can fix this by subtracting the "contribution" of the possible Siegel zero $\chi_{\text {Siegel }}(n) n^{\beta-1} \Lambda_{Q}$ (where β is the Siegel zero).
- Can evaluate
$\left\|\chi(n) n^{\beta-1} \Lambda_{Q}\right\|_{U^{s+1}([N])} \sim\|\chi\|_{U^{s+1}([N])}$ directly to obtain cancellation.
- For simplicity, assume Landau-Siegel zeros don't exist.

Obstructions to quantitative bounds

■ In (Tao-Teräväinen, 2021), show

$$
\left\|\Lambda-\Lambda_{Q}\right\|_{U^{s+1}([N])} \ll \log \log (N)^{-c} .
$$

Obstructions to quantitative bounds

■ In (Tao-Teräväinen, 2021), show $\left\|\Lambda-\Lambda_{Q}\right\|_{U^{s+1}([N])} \ll \log \log (N)^{-c}$.
■ In (L. 2023), show
$\left\|\Lambda-\Lambda_{Q}\right\|_{U^{3}([N])} \ll \exp \left(-O\left(\log (N)^{c}\right)\right)$.

Applying the Inverse Theorem

James Leng

It can be reduced to show (Tao-Teräväinen 2021):

$$
\mathbb{E}_{n \in[N]}\left(\Lambda-\Lambda_{Q}\right)(n) F(g(n) \Gamma) \ll \exp \left(-O\left(\log ^{c}(N)\right)\right)
$$

for $g(n) \Gamma$ having dimension $d=\log \log (N)^{c}$ and complexity $\exp \left(O\left(\exp \left(d^{O(1)}\right)\right)\right)$

Applying the Inverse Theorem

James Leng

It can be reduced to show (Tao-Teräväinen 2021):

$$
\mathbb{E}_{n \in[N]}\left(\Lambda-\Lambda_{Q}\right)(n) F(g(n) \Gamma) \ll \exp \left(-O\left(\log ^{c}(N)\right)\right)
$$

for $g(n) \Gamma$ having dimension $d=\log \log (N)^{c}$ and complexity $\exp \left(O\left(\exp \left(d^{O(1)}\right)\right)\right)$ or (L. 2023)

$$
\mathbb{E}_{n \in[N]}\left(\Lambda-\Lambda_{Q}\right)(n) F(g(n) \Gamma) \ll \exp \left(-O\left(\log ^{c}(N)\right)\right)
$$

where $d=\log (N)^{c}$ and complexity $\exp \left(O(d)^{O(1)}\right)$ (actually can take complexity to be $\left.O(d)^{O(1)}\right)$.

Type I and type II reduction

James Leng

Using Vaughan's decomposition, we are reduced to showing for certain nilsequences

- Type I estimate:

$$
\mathbb{E}_{n \in[N], n \equiv 0} \quad(\bmod d) F(g(n) \Gamma) \ll \exp \left(-O\left(\log ^{c}(N)\right)\right)
$$

for "most" $d \in[D, 2 D]$ with $D \leq N^{2 / 3}$ (actually, for (L. 2023) must take $D \leq \exp \left(O\left(\log ^{c}(N)\right)\right)$)

Type I and type II reduction

James Leng

Using Vaughan's decomposition, we are reduced to showing for certain nilsequences

■ Type I estimate:

$$
\mathbb{E}_{n \in[N], n \equiv 0} \quad(\bmod d) F(g(n) \Gamma) \ll \exp \left(-O\left(\log ^{c}(N)\right)\right)
$$

for "most" $d \in[D, 2 D]$ with $D \leq N^{2 / 3}$ (actually, for
(L. 2023) must take $D \leq \exp \left(O\left(\log ^{c}(N)\right)\right)$)

- Type II estimate: for A, D with $A D \sim N$ and $N^{1 / 3} \leq D \leq N^{2 / 3}$

$$
\begin{aligned}
& \mathbb{E}_{a, a^{\prime} \in[A, 2 A], d, d^{\prime} \in[D, 2 D]} F(g(a d) \Gamma) \overline{F\left(g\left(a^{\prime} d\right) \Gamma\right) F\left(g\left(a d^{\prime}\right) \Gamma\right)} \\
& F\left(g\left(a^{\prime} d^{\prime}\right) \Gamma\right) \ll \exp \left(-O\left(\log (N)^{c}\right)\right) .
\end{aligned}
$$

Vinogradov's Proof

James Leng

Vinogradov's Proof boils down to showing that if α is "very irrational", then

$$
\mathbb{E}_{n \in[N], n \equiv 0} \quad(\bmod d) e^{2 \pi i \alpha n} \ll \exp \left(-O\left(\log ^{c}(N)\right)\right)
$$

for "most" $d \in[D, 2 D]$

Vinogradov's Proof

James Leng

Vinogradov's Proof boils down to showing that if α is "very irrational", then

$$
\mathbb{E}_{n \in[N], n \equiv 0} \quad(\bmod d) e^{2 \pi i \alpha n} \ll \exp \left(-O\left(\log ^{c}(N)\right)\right)
$$

for "most" $d \in[D, 2 D]$ or
$\mathbb{E}_{a, a^{\prime} \in[A, 2 A], d, d^{\prime} \in[D, 2 D]} e^{2 \pi i \alpha\left(a-a^{\prime}\right)\left(d-d^{\prime}\right)} \ll \exp \left(-O\left(\log (N)^{c}\right)\right)$.

Vinogradov's Proof

Improved quadratic Gowers uniformity for the von Mangoldt function

James Leng

Vinogradov's Proof boils down to showing that if α is "very irrational", then

$$
\mathbb{E}_{n \in[N], n \equiv 0} \quad(\bmod d) e^{2 \pi i \alpha n} \ll \exp \left(-O\left(\log ^{c}(N)\right)\right)
$$

for "most" $d \in[D, 2 D]$ or
$\mathbb{E}_{a, a^{\prime} \in[A, 2 A], d, d^{\prime} \in[D, 2 D]} e^{2 \pi i \alpha\left(a-a^{\prime}\right)\left(d-d^{\prime}\right)} \ll \exp \left(-O\left(\log (N)^{c}\right)\right)$.
So suppose for "many" $d \in[D, 2 D]$ that

$$
\mathbb{E}_{n \in[N], n \equiv 0} \quad(\bmod d) e^{2 \pi i \alpha n} \gg \exp \left(-O\left(\log ^{c}(N)\right)\right)
$$

Vinogradov's Proof

Improved quadratic Gowers uniformity for the von Mangoldt
function
James Leng

Vinogradov's Proof boils down to showing that if α is "very irrational", then

$$
\mathbb{E}_{n \in[N], n \equiv 0} \quad(\bmod d) e^{2 \pi i \alpha n} \ll \exp \left(-O\left(\log ^{c}(N)\right)\right)
$$

for "most" $d \in[D, 2 D]$ or
$\mathbb{E}_{a, a^{\prime} \in[A, 2 A], d, d^{\prime} \in[D, 2 D]} e^{2 \pi i \alpha\left(a-a^{\prime}\right)\left(d-d^{\prime}\right)} \ll \exp \left(-O\left(\log (N)^{c}\right)\right)$.
So suppose for "many" $d \in[D, 2 D]$ that

$$
\mathbb{E}_{n \in[N], n \equiv 0} \quad(\bmod d) e^{2 \pi i \alpha n} \gg \exp \left(-O\left(\log ^{c}(N)\right)\right)
$$

or
$\mathbb{E}_{a, a^{\prime} \in[A, 2 A], d, d^{\prime} \in[D, 2 D]} e^{2 \pi i \alpha\left(a-a^{\prime}\right)\left(d-d^{\prime}\right)} \gg \exp \left(-O\left(\log (N)^{c}\right)\right)$

Vinogradov's Proof

Improved quadratic Gowers uniformity for the von Mangoldt function

James Leng

$$
\begin{aligned}
\mathbb{E}_{n \in[N], n \equiv 0} & (\bmod d) e^{2 \pi i \alpha n} \approx \mathbb{E}_{a \in[N / d]} e^{2 \pi i \alpha a d} \\
& =O\left(\frac{D}{N\|a d \alpha\|_{\mathbb{R} / \mathbb{Z}}}\right)
\end{aligned}
$$

Or that

$$
\|a d \alpha\|_{\mathbb{R} / \mathbb{Z}} \ll \exp \left(O\left(\log (N)^{c}\right)\right) D / N
$$

Vinogradov's Proof

James Leng

$$
\begin{aligned}
\mathbb{E}_{n \in[N], n \equiv 0} & (\bmod d) e^{2 \pi i \alpha n} \approx \mathbb{E}_{a \in[N / d]} e^{2 \pi i \alpha a d} \\
& =O\left(\frac{D}{N\|a d \alpha\|_{\mathbb{R} / \mathbb{Z}}}\right)
\end{aligned}
$$

Or that

$$
\|a d \alpha\|_{\mathbb{R} / \mathbb{Z}} \ll \exp \left(O\left(\log (N)^{c}\right)\right) D / N
$$

This shows that α can't be "very irrational."

Vinogradov's Proof

James Leng

$$
\begin{aligned}
\mathbb{E}_{n \in[N], n \equiv 0} & (\bmod d) e^{2 \pi i \alpha n} \approx \mathbb{E}_{a \in[N / d]} e^{2 \pi i \alpha a d} \\
& =O\left(\frac{D}{N\|a d \alpha\|_{\mathbb{R} / \mathbb{Z}}}\right)
\end{aligned}
$$

Or that

$$
\|\operatorname{ad} \alpha\|_{\mathbb{R} / \mathbb{Z}} \ll \exp \left(O\left(\log (N)^{c}\right)\right) D / N
$$

This shows that α can't be "very irrational." Similar computation for type II.

Example 1

Improved quadratic Gowers uniformity for the von Mangoldt function

James Leng

Want to obtain cancellation of a sum of an orbit along a nilmanifold.

Example 1

Improved quadratic Gowers uniformity for the von Mangoldt function

James Leng

Want to obtain cancellation of a sum of an orbit along a nilmanifold.

$$
\mathbb{E}_{n \in[N]} e^{2 \pi i \alpha n}=\frac{1}{N} \frac{e^{2 \pi i(N+1) \alpha}-1}{e^{2 \pi i \alpha}-1}
$$

Example 1

James Leng

Want to obtain cancellation of a sum of an orbit along a nilmanifold.

$$
\mathbb{E}_{n \in[N]} e^{2 \pi i \alpha n}=\frac{1}{N} \frac{e^{2 \pi i(N+1) \alpha}-1}{e^{2 \pi i \alpha}-1}
$$

If $\alpha=O(1 / N)(\bmod 1)$, expect sum to be large.
Otherwise, expect sum to be small.

Example 2

Improved quadratic Gowers uniformity for the von Mangoldt function

James Leng

Let $F: S^{1} \rightarrow \mathbb{C}$ be smooth

$$
\mathbb{E}_{n \in[N]} F(\alpha n)=\int_{S^{1}} F(\theta) d \theta+[\text { Error }]
$$

Expect error term to be small if α is irrational.

Example 3

James Leng

Let $F: \mathbb{T}^{d} \rightarrow \mathbb{C}$ be smooth.

$$
\mathbb{E}_{n \in[N]} F\left(\alpha_{1} n, \alpha_{2} n, \ldots, \alpha_{d} n\right)=
$$

$$
\int_{\mathbb{T}^{d}} F\left(\theta_{1}, \ldots, \theta_{d}\right) d \theta_{1} \ldots d \theta_{d}+[\text { Error }] .
$$

For generic $\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ expect error to be small.

Example 3

James Leng

Let $F: \mathbb{T}^{d} \rightarrow \mathbb{C}$ be smooth.

$$
\mathbb{E}_{n \in[N]} F\left(\alpha_{1} n, \alpha_{2} n, \ldots, \alpha_{d} n\right)=
$$

$$
\int_{\mathbb{T}^{d}} F\left(\theta_{1}, \ldots, \theta_{d}\right) d \theta_{1} \ldots d \theta_{d}+[\text { Error }] .
$$

For generic $\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ expect error to be small. It's possible that $\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ can lie in a subgroup. This can make the error large.

Equidistribution on nilmanifolds

Improved quadratic Gowers uniformity for the von Mangoldt function

James Leng

■ Common thread is an equidistribution theory.

Equidistribution on nilmanifolds

James Leng

- Common thread is an equidistribution theory.

■ You get cancellation of the sum along your orbit if your orbit equidistributes, but if not, you can hope to say that your orbit is simpler.

Equidistribution on nilmanifolds

- Common thread is an equidistribution theory.

■ You get cancellation of the sum along your orbit if your orbit equidistributes, but if not, you can hope to say that your orbit is simpler.
■ Classical theory of Leon Green and Leibman indicate that either a polynomial sequence $g(n) \Gamma$ "equidistributes" on the nilmanifold, or there exists an algebraic obstruction, i.e. it lies in some subnilmanifold.

Equidistribution on nilmanifolds

James Leng

- Common thread is an equidistribution theory.

■ You get cancellation of the sum along your orbit if your orbit equidistributes, but if not, you can hope to say that your orbit is simpler.
■ Classical theory of Leon Green and Leibman indicate that either a polynomial sequence $g(n) \Gamma$ "equidistributes" on the nilmanifold, or there exists an algebraic obstruction, i.e. it lies in some subnilmanifold.
■ Green-Tao give a quantitative equidistribution theorem.

Equidistribution on nilmanifolds

James Leng

- Common thread is an equidistribution theory.
- You get cancellation of the sum along your orbit if your orbit equidistributes, but if not, you can hope to say that your orbit is simpler.
■ Classical theory of Leon Green and Leibman indicate that either a polynomial sequence $g(n) \Gamma$ "equidistributes" on the nilmanifold, or there exists an algebraic obstruction, i.e. it lies in some subnilmanifold.
- Green-Tao give a quantitative equidistribution theorem.
■ Tao-Teräväinen work out explicit bounds for Green-Tao, obtaining losses double exponential in dimension.

Improvements over Tao-Teräväinen

- Tao-Teräväinen lose two logarithms coming from Manners' inverse theorem.

Improvements over Tao-Teräväinen

James Leng

■ Tao-Teräväinen lose two logarithms coming from Manners' inverse theorem.
■ Sanders' (2012) U^{3} inverse theorem gives those two logarithms back.

Improvements over Tao-Teräväinen

James Leng

■ Tao-Teräväinen lose two logarithms coming from Manners' inverse theorem.
■ Sanders' (2012) U^{3} inverse theorem gives those two logarithms back.
■ Tao-Teräväinen also lose two logarithms from the equidistribution theory of nilmanifolds.

Improvements over Tao-Teräväinen

James Leng

- Tao-Teräväinen lose two logarithms coming from Manners' inverse theorem.
- Sanders' (2012) U ${ }^{3}$ inverse theorem gives those two logarithms back.
- Tao-Teräväinen also lose two logarithms from the equidistribution theory of nilmanifolds.
- Inserting Sanders' result makes those two logarithms loss into a one logarithm loss.

Improvements over Tao-Teräväinen

James Leng

- Tao-Teräväinen lose two logarithms coming from Manners' inverse theorem.
- Sanders' (2012) U^{3} inverse theorem gives those two logarithms back.
- Tao-Teräväinen also lose two logarithms from the equidistribution theory of nilmanifolds.
- Inserting Sanders' result makes those two logarithms loss into a one logarithm loss.
■ Gowers-Wolf (2010) (and also Green-Tao (2007, 2017)) give a way to equidistribute on two-step nilmanifolds without that one logarithm loss.

More details about the proof

■ Gowers-Wolf's approach tells you that for "many" $d \in[D, 2 D], F(g(a d) \Gamma)$ is roughly constant on some Bohr set.

More details about the proof

■ Gowers-Wolf's approach tells you that for "many" $d \in[D, 2 D], F(g(a d) \Gamma)$ is roughly constant on some Bohr set.

- Goal is to show that this means that $F(g(n) \Gamma)$ is roughly constant on a Bohr set. Via a Vinogradov-type lemma, we need a good lower bound for

$$
\bigcup_{d \in \mathcal{D}} B_{d}
$$

where $B_{d}=\{n \in B: n \equiv 0(\bmod d)\}$ and \mathcal{D} are the values of d that $F(g(a d) \Gamma)$ are constant and B the Bohr set.

More details about the proof

■ Gowers-Wolf's approach tells you that for "many" $d \in[D, 2 D], F(g(a d) \Gamma)$ is roughly constant on some Bohr set.
■ Goal is to show that this means that $F(g(n) \Gamma)$ is roughly constant on a Bohr set. Via a Vinogradov-type lemma, we need a good lower bound for

$$
\bigcup_{d \in \mathcal{D}} B_{d}
$$

where $B_{d}=\{n \in B: n \equiv 0(\bmod d)\}$ and \mathcal{D} are the values of d that $F(g(a d) \Gamma)$ are constant and B the Bohr set.
■ Seems difficult to show. (In $\mathbb{F}_{p}[T]$, Bienvenu and Le need bilinear Bogolyubov and some tricky matrix

More details about the proof

James Leng

■ In a type II sum, can get "cancellation" in both a and d variables, allowing one to prove something stronger: that $F(g(a d) \Gamma)$ is roughly a "rational phase with bounded denominator" along B_{d} for every d in some interval $I=[K, 2 K]$.

More details about the proof

■ In a type II sum, can get "cancellation" in both a and d variables, allowing one to prove something stronger: that $F(g(a d) \Gamma)$ is roughly a "rational phase with bounded denominator" along B_{d} for every d in some interval $I=[K, 2 K]$.
■ Can estimate $\bigcup_{d \in I} B_{d}$ efficiently via the second moment method by restricting to the primes in I.

More details about the proof

■ In a type II sum, can get "cancellation" in both a and d variables, allowing one to prove something stronger: that $F(g(a d) \Gamma)$ is roughly a "rational phase with bounded denominator" along B_{d} for every d in some interval $I=[K, 2 K]$.
■ Can estimate $\bigcup_{d \in I} B_{d}$ efficiently via the second moment method by restricting to the primes in I.
■ For the type I sum, convert the case of when d is large to the type II case.

More details about the proof

James Leng

■ In a type II sum, can get "cancellation" in both a and d variables, allowing one to prove something stronger: that $F(g(a d) \Gamma)$ is roughly a "rational phase with bounded denominator" along B_{d} for every d in some interval $I=[K, 2 K]$.
■ Can estimate $\bigcup_{d \in I} B_{d}$ efficiently via the second moment method by restricting to the primes in I.
■ For the type I sum, convert the case of when d is large to the type II case.

- For d small in the type I case, get enough cancellation in one variable to prove the theorem anyways.

Remarks and Loose Threads

James Leng

■ In (L. 2023), "most" of the cancellation/gain comes from analyzing the type II sum. By summing over d in a type I sum with large D, we convert the large D case to a type II sum.

Remarks and Loose Threads

James Leng

■ In (L. 2023), "most" of the cancellation/gain comes from analyzing the type II sum. By summing over d in a type I sum with large D, we convert the large D case to a type II sum.

- The Gowers-Wolf approach tells you that along a "nice set", your nilsequence is roughly constant. However, we analyze

$$
\mathbb{E}_{a} F(g(a d) \Gamma)
$$

Unclear in that framework what happens when you sample through many d.

Remarks and Loose Threads

- In (L. 2023), "most" of the cancellation/gain comes from analyzing the type II sum. By summing over d in a type I sum with large D, we convert the large D case to a type II sum.
- The Gowers-Wolf approach tells you that along a "nice set", your nilsequence is roughly constant. However, we analyze

$$
\mathbb{E}_{\mathrm{a}} F(g(a d) \Gamma)
$$

Unclear in that framework what happens when you sample through many d.

- Can this method generalize to higher step nilsequences to obtain single exponential losses in dimension?

Update

■ L. has proved a generalized equidistribution of nilsequences that gives good bounds for higher degree nilsequences. See https://arxiv.org/abs/2306. 13820.

- Conditional on the quasi-polynomial $U^{s+1}(\mathbb{Z} / N \mathbb{Z})$ inverse theorem, the higher order Möbius and von Mangoldt uniformity estimates with similar bounds can be shown.

Thank you!

Improved quadratic Gowers uniformity for the von Mangoldt function

James Leng

Joni Teräväinen's slides: https://drive.google.com/ file/d/1DdvWyGV1CjvpMOyEr-q0lqs4o0fcBKuw/view

